e-serde / mem_dbg / sux / dsi-
bitstream / webgraph:

A Rust ecosystem for large-graph processing

Tommaso Fontana, Sebastiano Vigna, Stefano Zacchirol

Partially supported by project SERICS (PEO0000014) under the NRRP MUR program funded by the EU - NGEU, and by project ANR COREGRAPHIE, grant ANR-20-
CE23-0002 of the French Agence Nationale de la Recherche

The WebGraph Framework

* An open-source framework for compressed representation of graphs
* One of the most long-lived projects of this kind (>20 years!)

 Hundreds of publications in major conferences and journals using it (>1500
references)

e In 2011 news went around the world: Facebook had four dearees of

Separat|0n rfME P.AGE TODA:S.PAPER VIDEO | MOST POPULAR TIMESTOP.ICS
Che New JJork Eimes Business Day
Technology
* The measurement WaS perfOrmed a‘t FacebOOk WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH I

: : C
using WebGraph (at that time, 721M nodes, 6¢€ Separating You and Me? 4.74 Degrees

By JOHN MARKOFF and SOMINI SENGUPTA
FPublished: November 21, 2011

The world is even smaller than you thought. Ej RECOMMEND

+ TWITTER

Moving to Rust

* A high-performance, safe language
 Memory safe (as Java), but with zero-cost abstractions
* Arrays as large as memory allows

* Fine-grained access to OS facilities (memory mapping)
o | azy iterators

 Moving to Rust required porting a number of ideas

e-serde

use epserde: :prelude::*;

* £-COpY
. » Run | Debug
* Like ze fn main() -> anyhow: :Result<()> {
e Unlike let s = vec![0; 1000];
Immuts
s.store("foo.eps")?;
e Unlike let T = <Vec<132>>::mmap(“foo.eps”, Flags::RANDOM_ACCESS)?; tures
Ok(())
 Unlike 1} d no
iImpact

 Requires collaboration from the underlying struct

MEeIY size: s1s

capacity: 1215

* F1K3h'F 985 B 100.00% ®: example::Struct<example::TestEnum, example::Data<al
16 B 1.62% —a: example::TestEnum
* Levere —Variant: Unnamed
collect g5 g.81% | Fo: usize
. 1 B 0.10% —-1: u8
* Additic 823 B 83.55% [b: example::Data<alloc::vec::Vec<u8>>
724 B 73.50% —a: alloc::vec::Vec<ku8>
T e 64 B 6.50% —b: alloc::vec::Vec<132>
get si 35 B 3.55% | “c: (usize, alloc::string::String)
deep_s 8 B 0.81% |-e: usize
size 0 27 B 2.74% L-1: alloc::string::String
mem Si 8 B 0.81% —test: 1size
138 B 14.01% “~s: std::collections::hash::set::HashSet<usize>

SUX

» Succinct data structures
e Partial port of sux (C++ project) and Sux4dJ (Java project)
* There are some existing crates (some porting the projects above)

* We provide compositional constructor for mix-and-match between ranking
and selection structures

 Mainly used for the Elias—Fano representation of monotone sequences (e.g.,
pointers into records)

dsi-bitstream

» High-performance bit streams

 Read/write data by word (settable)

» Supports little and big endian files

* |nstantaneous codes for compression: Elias y, Golomb, etc.

* Flexible architecture and benchmarks to tune to your hardware (use decoding
tables or not?)

« Ay code read in less than 2ns (for data with the intended distribution)

webgraph

* Rust port of the Java version
* Uses dsi-bitstream for instantaneous codes, sux for pointers into the bitstream

* On the Software Heritage graph (34 billion nodes, 517 billion arcs) a BFS visit is
three time faster (3h)

* Unbelievably better ergonomics WRT Java

o Still in development on Github, soon into crates.io

 Composition-based labeling

* Lender- (rather than Iterator-) based architecture for iterators that depend on the
graph state

http://crates.io

