
Clustering in PostgreSQL
Because one database server is never enough

(and neither is two)

postgres=# select * from umair;

-[RECORD 1]-----------------------------
name | Umair Shahid
description | 20+ year PostgreSQL veteran
company | Stormatics
designation | Founder
location | Islamabad, Pakistan
family | Mom, Wife & 2 kids
kid1 | Son, 17 year old
kid2 | Daughter, 14 year old

Our mission is to help businesses scale PostgreSQL
reliably for their mission-critical data

On to the topic now!

What is High Availability?

● Remain operational even in the face of hardware or
software failure

● Minimize downtime
● Essential for mission-critical applications that require

24/7 availability
● Measured in ‘Nines of Availability’

Nines of Availability

Availability Downtime per year
90% (one nine) 36.53 days
99% (two nines) 3.65 days
99.9% (three nines) 8.77 hours
99.99% (four nines) 52.60 minutes
99.999% (five nines) 5.26 minutes

But my database resides
in the cloud, and the
cloud is always available

Right?

Wrong!

Amazon RDS Service Level Agreement

Multi-AZ configurations for MySQL, MariaDB, Oracle, and PostgreSQL are
covered by the Amazon RDS Service Level Agreement ("SLA"). The RDS SLA
affirms that AWS will use commercially reasonable efforts to make Multi-AZ
instances of Amazon RDS available with a Monthly Uptime Percentage of at
least 99.95% during any monthly billing cycle. In the event Amazon RDS does
not meet the Monthly Uptime Percentage commitment, affected customers
will be eligible to receive a service credit.*

99.95% = 4.38 hours of downtime per year!

22 minutes of downtime per month!

* https://aws.amazon.com/rds/ha/

https://aws.amazon.com/rds/ha/

So - what do I do if I want
better reliability for my
mission-critical data?

Clustering!

What is clustering?

Primary

Standby 1 Standby 2

Application

Write

Read

Replicate

● Multiple database servers work
together to provide redundancy

● Gives the appearance of a single
database server

● Application communicates with
the primary PostgreSQL instance

● Data is replicated to standby
instances

● Auto failover in case the primary
node goes down

What is auto failover?

Primary

Standby 1 Standby 2

Application

Standby 1
Primary

Standby 2 New Standby

Application

Primary

Standby 1 Standby 2

Application

1 2 3

* Primary node goes down * Standby 1 gets promoted to Primary
* Standby 2 becomes subscriber to
Standby 1

* New Standby is added to the cluster
* Application talks to the new Primary

● Write to the primary
PostgreSQL instance and
read from standbys

● Data redundancy through
replication to two standbys

● Auto failover in case the
primary node goes down

Clusters with load balancing

Primary

Standby 1 Standby 2

Application

Write

Read

Replicate

Clusters with backups and disaster recovery

● Off-site backups
● RTO and RPO requirements

dictate configuration
● Point-in-time recovery

It is extremely important to periodically test your backups

Primary

Standby 1 Standby 2

Application

Write
Read
Replicate

Backup Backup

● Shared-Everything architecture
● Load balancing for read as well

as write operations
● Database redundancy to achieve

high availability
● Asynchronous replication

between nodes for better
efficiency

* with conflict resolution at the application layer

Multi-node clusters with Active-Active configuration*

Active 2

Application

Write Read Replicate

Active 1 Active 3

Multi-node clusters with data sharding and horizontal scaling

Node 2

Application

Node 1 Node 3

Coordinator

Write Read

● Shared-Nothing architecture
● Automatic data sharding based

on defined criteria
● Read and write operations are

auto directed to the relevant
node

● Each node can have its own
standbys for high availability

Globally distributed clusters

● Spin up clusters on the cloud,
on-prem, bare metal, VMs, or
a hybrid of the above

● Geo fencing for regulatory
compliance and better local
performance

● High availability across data
centers and geographies

Asynchronous

● Data may not be transferred immediately
● Transaction commits without waiting for

confirmation from replica
● Data may be inconsistent across nodes
● Faster and more scalable
● Used where performance matters more

than data accuracy

Replication - Synchronous vs Asynchronous

Synchronous

● Data is transferred immediately
● Transaction waits for confirmation from

replica before it commits
● Ensures data consistency across all nodes
● Performance overhead caused by latency
● Used where data accuracy is critical, even

at the expense of performance

#AI

Challenges in
Clustering

● Split brain
● Network latency
● False alarms
● Data inconsistency

Challenges in
Clustering

● Split brain
● Network latency
● False alarms
● Data inconsistency

Split Brain

Defined

Node in a highly available cluster lose
connectivity with each other but continue to
function independently

Challenge

More than one node believes that it is the
primary leading to inconsistencies and
possible data loss

● Network reliability and redundancy
○ Minimize the risk of partitions due to

connectivity issues
○ Redundant network hardware and paths

between nodes
○ Reliable cross datacenter connectivity

● Miscellaneous
○ Monitoring and alerts
○ Regular testing
○ Clear and precise documentation
○ Training

Split Brain - Prevention

● Use a reliable cluster manager
○ Algos and heartbeat mechanisms to

monitor node availability
○ Make decisions about failovers and

promotions
● Quorum-based decision making

○ Majority of nodes must agree on primary
node’s status

○ Requires odd number of nodes
● Witness server

○ Used to achieve a majority in an even-node
cluster

○ Does not store data

1. Identify the situation
○ Monitoring and alerting is crucial

2. Stop traffic
○ Application will need to pause

3. Determine the most up to date node
○ Compare transaction logs, timestamps,

transaction IDs, etc …
4. Isolate the nodes from each other

○ Prevent further replication so outdated
data does not overwrite latest one

5. Restore data consistency
○ Apply missed transactions
○ Resolve data conflicts

6. Reconfigure replication
○ Make the most update to date node the

primary
○ Reinstate the remaining nodes as replicas

7. Confirm integrity of the cluster
○ Monitor and double-check replication

8. Re-enable traffic
○ Allow read-only traffic, confirm reliability,

then allow write operations
9. Run a retrospective

○ Thorough analysis of the incident to
prevent future occurrences

○ Update docs and training to capture the
cause of split brain

Split Brain - Resolution

Challenges in
Clustering

● Split brain

● Network latency
● False alarms
● Data inconsistency

Defined

Time delay when data is transmitted from
one point to another

Challenge

Delayed replication can result in data loss.
Delayed signals can trigger a false positive
for failover.

Network Latency

● Network congestion
● Low quality network hardware
● Distance between nodes
● Virtualization overheads
● Bandwidth limitations
● Security devices and policies
● Transmission medium

Network Latency - Causes

● Employ redundancy
○ Network paths as well as health checks

● Best practices
○ Test and simulate various network

conditions
○ Monitoring and alerting for early detection

of problems
○ Documentation of rationale behind values

chosen
○ Periodic training

● Adjust heartbeat & timeout settings
○ Fine tune frequency of heartbeat and

timeout to match typical network behavior
● High speed & low latency network

○ Investing in high quality networking pays
dividends

● Quorum-based decision making
○ Majority of nodes must agree on primary

node’s status
○ Requires odd number of nodes or a

witness node for tie-breaker

Network Latency - Prevention of False Positive

Challenges in
Clustering

● Split brain
● Network latency

● False alarms
● Data inconsistency

Defined

A problem is reported, but in reality, there is
no issue

Challenge

Can trigger a failover when one isn’t
required, leading to unnecessary disruptions
and impacting performance

False Alarms

False Alarms - Causes

● Network issues
○ Latency, congestion, misconfiguration

● Configuration errors
○ Thresholds set too low?

● Resource constraints
○ High CPU load, memory pressure, I/O bottleneck

● Human error
○ Misreading information, miscommunication of scheduled maintenance, …

● Database locks
○ Long running queries with exclusive locks

False Alarms - Prevention

● Optimized thresholds
○ Best practices, past experience, and some hit & trial is required to ensure that the thresholds

are configured appropriately
● Regular upgrades and testing

○ Latest version of software and firmware to be used
○ Testing of various use cases can help identify possible misconfigurations

● Resource and performance optimization
○ Regularly monitor resource utilization and tune queries and database for performance
○ Maintenance tasks like vacuum, analyze, …

● Comprehensive monitoring and alerting
○ Monitoring can help with early detection of anomalies
○ Alerts can give early warnings as the database approaches defined thresholds

Challenges in
Clustering

● Split brain
● Network latency
● False alarms

● Data inconsistency

Defined

Situations where data in different nodes of a
cluster becomes out of sync, leading to
inconsistent results and potential data
corruption

Challenge

Inaccurate query results that vary based on
which node is queried. Such issues are very
hard to debug.

Data Inconsistency

● Replication lag
○ Network latency and high workloads can be big contributors
○ Data loss in case of failover

● Split brain
● Incorrect configuration

○ Log shipping configurations
○ Replication slots setup
○ Replication filters

Data Inconsistency - Causes

Data Inconsistency - Prevention

● Closely manage asynchronous replication
○ Closely monitor pg_stat_replication for replication lag
○ Place nodes in close proximity and use high quality network hardware

● Regularly check XID across the cluster
● Monitor replication conflicts and resolve promptly
● Regular maintenance and performance optimization

○ Vacuum, analyze, …
○ XID wraparound

This all sounds really hard

Open source clustering tools for PostgreSQL

● Repmgr
○ https://repmgr.org/
○ GPL v3
○ Provides automatic failover
○ Manage and monitor replication

● pgpool-II
○ https://pgpool.net/
○ Similar to BSD & MIT
○ Middleware between PostgreSQL and client applications
○ Connection pooling, load balancing, caching, and automatic failover

● Patroni
○ https://patroni.readthedocs.io/en/latest/
○ MIT
○ Template for PostgreSQL high availability clusters
○ Automatic failover, configuration management, & cluster management

https://repmgr.org/
https://pgpool.net/
https://patroni.readthedocs.io/en/latest/

Questions?

pg_umair

