Live Streaming End-to-End with
Packet Recovery
and lIbRIST Development Roadmap

Streaming live using RIST On Demand to thousands,
how you can have your cake and eat it too.

Sergio Ammirata, Ph.D.

What We'll Discuss

libRIST Development “Roadmap”

O Clarifying misconceptions

O Broadening “"Reach”

O Performance Enhancements and Bug Fixes

O Boast: We Think We've Achieved the Original
“Interoperability” Goal!

Live Streaming End-to-End with Packet Recovery

O What We Mean by End-to-End

O For Really Large Audiences

O Highly Secure, Authorization, Easy Management, Custom
Client

O Packet Recovery with Low Latency

lIbRIST Development Roadmap
2020-2023
Goals for 2024

RIST Milestones

RIST Activity
Group formed
by Video
Services
Forum
Aapril 2017

W5F TR-06-1
BIST Simple
Profile
published
Detober MR

Successiul
miulti-wendor
interop
demonstration
Seplember
2018

WSF TR-D&-2
RIST Main
Profile
published
March 2020

libRIST Development “RIST Protocol Specs”

»

RIST Forum

Advanced
Prafile

Develapment

Campleted
Seplember
2021

i |

vl

libRIST Development “RIST Protocol Specs”

o Simple Profile:
TR-06-1: First Release (Sep 2018)
TR-06-1:2020 RTT Echo message (Jun 2020)

« Main Profile
TR-06-2: First Release (Mar 2020)
TR-06-2:2021 PSK Security Fix update (Apr 2021)
TR-06-2:2022 EtherType and EAP-SHA256-SRP6a (Aug 2022)
TR-06-2:2023 Errata to 2022 version (Aug 2023)

« Advanced Profile

TR-06-3: First Release (Oct 2021)
TR-06-3:2022 EAP-SHA256-SRP6a (Sep 2022)

libRIST Development “RIST Protocol Specs”

The TR-06-4 series of recommendations define ancillary features
for the RIST protocol that are applicable to multiple profiles.

TR-06-4 Part1: Source Adaptation (Nov 2022)
TR-06-4 Part2: RIST over Wireguard VPN (Jan 2023)
TR-06-4 Part3: Relay (Jun 2023)

TR-06-4 Part4: Decoder Synchronization (Jan 2024)
TR-06-4 Part5: Multicast Discovery (Oct 2023)

Other recommendations are still in the works ...

libRIST Development "“Roadmap 2020-2023"

We assume, for this talk, you are familiar with RIST

O A new protocol for transmission of IP data across lossy networks using UDP/RTP with
MNACK-based retransmissions.

Clarifying Misconceptions

O Itis NOT limited to MPEGTS video streams, advanced profile includes support for any
payload with clearly identifiable payload types, even raw binary payloads.

O Itis NOT only for delayed streams that can afford high latency. It includes support for
real time unprotected data channels and very low latency recovery channels.

QO Itis NOT for transmissions in only one direction. It allows bi-directional communication
with and without packet recovery.

libRIST Development "“Roadmap 2020-2023"

RIST Specification Improvements That Extend Reach

O Highly Secure Authorization for Mass Audience Live Streaming
O New "use scenarios” such as a one-way satellite-friendly “intrusive”
protocol

Distribution

O Liberal licensing for linkage in your own projects, BSD2
O Compile options in popular encoder, decoder platforms

Timely performance enhancements and bug fixes

Roadmap 2020-2023: RIST Specification

EAP SRP 6a Authentication

O Introduced 2022

O Free and more secure than most commercial DRMs,
supports large audiences

O We'll Focus on this in part 2 of this presentation

One-Way Network/Satellite

O “Intrusive” method adds error correction for one-way
networking and/or highly asymmetrical networks ‘

Roadmap 2020-2023: Distribution

Distribution

O Now available in OpenBSD and Debian among other
distros and also integrated as compile options for
ffmpeg, vic, OBS and many others.
Q Liberal BSDZ licensing provisions encourage
incorporation into other software and hardware lines,
such as my own “day job” —_ —

Roadmap 2020-2023: Performance/Enhancements

® Automatic configuration and adjustment to network conditions
® Logging and metrics for improved control/fine tuning
® Latest minor version was released this past Halloween

Roadmap: Goals for 2024

® Add support for DTLS encryption and authentication
® Add support for the new Advanced Profile Specification
@® Backport support into VLC 3.0 (patches in review)

libRist “Roadmap:” the Original

“Interoperability” Goal

Bearing in mind that this was the origina/RIST goal, we think that we've now
got enough vendors, plus with the libRIST FOSS implementation, we believe
that interoperability among packet recovery applications is now a reality.

Additionally, with the liberal licensing of libRIST, there’s no reason that any
foss project should think they can't easily and quickly link in a library to
support RIST flavor packet recovery into any encoder/decoder branded
product.

W

Live Streaming End-to-End
with Packet Recovery

Live Streaming: Architectural Overview

Sources

Vii®

Sender

Input Port

Hash File and/or
Billing System
Messaging

EAP SRP Ga
Authonzation

Qutput Port

Receiver
o0=
o000

P P T EEEE
TP T EE®
P EEE®

Live Streaming: Architectural Overview

SguUnRCes

Vii©

Sender such as fimpeq, etc.

Sender

Input Port

Hash File andfor
Billing System
Messaging

EAP SAP Ga
Authorization

Qukput Port

Recedver

Qo=
000

e E®
PP EEEEEEE
G L T

Live Streaming: Architectural Overview

Sources

Vii®

Sender

L
Ay
L
L 1 Input Port
a o

- Hash File and/or
EAP SRP 6a Billing System

,:_::] Authonzation Messaning

D-lr]'l:p:lr."l;;"ﬂl'!

Receiver
o0=
o000

P T EEEE
P ST DD EE®
P EEEE

Live Streaming: Architectural Overview

Sources

Vil ©

= ® & -
L aer
= &
Input Port
L
Ea Hash File and/or
- EAP SRP Ga i
Authorzation :‘“mg ystam
e essaging
Output Port
o0 it Handshake: Exchange of messages
00 containing a username and
e passphrase hash.
FEHEFEPEEEEEEEEEEEEEEPEEEE EHE
FESYEPFTEEREEEEEEEEEEEEEEEE B

FEETEFEEEEE RS REEEE R EREEE

Live Streaming: Architectural Overview

Sources

if usermame found, the next

P messaging provides the passphrase
: a * Sender hash. This is checked against the
u
Input Port passphrase store.
L
C: EAP SRP 6a Haﬁh File and/or
Authorization BRling System
=y Messaging
Output Port
Receiver
Q0=
o000
e —
FEFFEFF PP E @

D EE
I EEBEEE

Live Streaming: Architectural Overview

Sources

] Sende
AL

Input Port
L

—

F 3
Output Port

EAP SRP Ga
Authorization

Hash File and/or
Billing System
Messaging

We can now switch to PSK, and

RecKiver send a key for decrypting the
g stream... and then start sending the
stream itself,
PSSR SRR EEEEEEm

D EE
I EEBEEE

Live Streaming: Latency

With planning, a 300ms glass-to-glass latency can be achieved
(Obviously this assumes a good network quality and proximity)

We already achieved this anywhere within the U.S.

When expanding the audience to borderline-quality or inter-continental
audiences, of course latency increases... but it's still superior to
HLS/DASH.

Live Streaming: Cloud Deployment

We have a ristZrist utility

It acts as a relay. It doesn't decrypt or encrypt.

It can live in a central cloud or in multiple CDON-type
locations.

It features the listener/auth, so can act as a
gatekeeper,

Adds no appreciable latency since it doesn't]
decrypt the stream. 2 |
Thus, you can put your source and first sender on
your end, multiple rist2rist’s in the cloud, and y i
create a virtual CDN fj

@ O Q00

Live Streaming: Scalability

“Quality”

O When using h264/av1 compression, the “sweet spot” seems to be
between 3 to SMbps for 720p or 1080p streams. This traverses
most corporate VPNs and can be handled by any hardware device.

“Quantity”

O Each rist2rist can handle up to 100 simultaneous connections and
still deliver bullet proof packet loss protection. The system can
scale by starting more processes. Our largest installation has more
than 1500 simultaneous viewers monitoring/producing day in, day
out, spread across two continents, viewing multiple streams of vary
high or ultra high quality. Performance, up time, ease of switchin
program-to-program etc. is rock solid.

ristsrppasswd

X

§ristsrppasswd --help

Usage: rilstsrppasswd [username] |[password]

Sristsrppasswd usernamegsomewhere, com MyPassphrase > /tmp/passstore
sristsrppasswd othernamegsomewhere.com OtherPassphrase == ftmp/passstore

fcat ftmpfpassstore

username@somewhere. com:BK/egnzAkUnHS5cQxpfxiNopYIuBIcISqmaZMsWTRw2qYEPgzAgshhp2d4)
VwiwtCeEVZstrkCEQzpUTgHEWBD/TRIDIKTT1Y Tt rTUPT 10K | t tUSDEnpMadCVKVROT+3IWpMVyUSELBES
Vaf2pUbWIKhXFludynruTZISeli6Co+rUAdkuzvzUGDTT r/UQadFlehWT o+ElekLUNBIKGNS L CK HHy 0}
ZecCBp/+LyilgdlLlanvbonBCNNQvWTuSLAY tBEBEXNROABS+bh] sPn2kS610T75nJARDK UG/ /RulkWoytl
EAT jNoBeWEqX@PofoNIa0BTFZhdShAienGXBOBMHC T ztw: EFIn6Wzs 3cx0LOP182mR ks yRENWyxsCE}
vhmnB8zPhi:3

othernameg@somewhere. com: N3XC inVHaeVFiGGEKATTnrneMinl71PSRIuTALPEIt985hPTHEqABCS 3]
QkguOrXssi4DUNLsnvCOgsWEdKKh+qbGooDuWupl+NOBGYWsS3wW INIFLSTwXy2 | UdoMkoOS fvagaWHxr
ol1wBY rONQ3pUlaTgld hupXIMEC@1GT J IyBT+ArTAMMrWg3ATE6APEDEqg lduzYbdywyanuVIzB+xEYZ
YyDABRGKDGARILFcUxHFICNIT/ 37 /Npb+WvPNEeb9kOhImVXB80n5LA5G56pYMC4RrbzD71] i IDFGIxnE;
b/ el IwhGDuGmBdy0d+¥WgS T fyLIKBTy962 xIMmj LXxFco9Pg : aobfwoBmfWaoB9/VELS j ThjHAZ gBPPSmE|
ScT9/B/R8k:3

Command Line: Sender

X 7o
tristsender --ilnputurl wdp://127.8.8.1:8192 --encryption-type 256 --secret pre-s
hared-passphrase --profile 1 --srpfile ftmp/passstore --outputurl rist://@127.0.
B8.1:186881

1766467862 . T27816|9.8 | [INFO] Starting ristsender version: v8.2.7-27-g234c2e? 1ib
RIST library: v0.2.7-27-g234c2ed API version: 4.2.8

1786467862 .727136|6.8| [INFO] Assigning stream-id 8 to this input

1766467862 .7271768|9.8| [INFO] Starting im Main Profile Mode
1706467862 .727194 0.8 | [INFO] RIST Sender Library vB8.2.7-27-g234clel
1766467862.727212(0.9| [INFO] Link configured with maxrate=180008 bufmin=1088 buf
max=1868 reorder=25 rttmin=5@ rttmax=586 congestion control=1 min retries=6 max
retries=328

1766467862.727218|0.139954411921424 | | INFO] Using 256 bits secret key

1706467862, 727228(0.139954411921424 | [INFO] URL parsed successfully: Host 127.8.8
.1, Part lee8]

1786467862, 727287 |0.139954411921424 | [INFD] Starting in URL listening mode (socke
t# 4)

1706467862 . 7272098 |0.139954411921424 | [INFD| Configured the starting socket receiv
g buffer size to 419438 Bytes.

1706467862, 72730359, 139954411921424 | [INFO] Configured the starting socket send b
uffer size to 419438 Bytes,

1766467B62.727314(0.139954411921424 | [INFO] Peer cname is XEONE127.9.8.1:10081
(1706467862 .727320|80.139954411921424 | [INFO] Setting max nacks per cycle to 88 |
1766467862.727323|0.139954411921424 | [INFO] Setting buffer size to 2000ms (Max bu
ffer size + 2 * Max RTT)

Tr—— T

Receiver Side

® You probably want the client viewer to present a dialog box for user
name and passphrase *need to convince VLC to allow this for RIST input
modules

@® You probably want to handle the “secret” parameter behind the scenes

@® With that, all that's needed is to mirror the parameters set up on the
RIST sender

Live Streaming: Summary

EAP SRP 6a Authentication

O

O
Q

o

Secure handshake, hashed password store similar to Apache, AES encryption once authenticated,
key rotation, easy back-end communications with accounting or similar store for authorizations
With the Sender in "Listen” mode enables many, many receivers

Ability to incorporate a degree of forward error correction in addition to backwards error
correction for very, very large audiences as per RIST spec

Multicast addressing as per RIS1 spec

Security of Stream

O

AES encryption combined with highly secure authorization coordinated with existing billing
systems provides as much as, if not more security of DRM over https transport = over much faster
udp transport. And adding an option for a minimal degree of forward error correction could enable
incredibly huge audiences. Note also that DRM via HLS/DASH over http/tcp can be encapsulated,
if necessary, over VPN like RIST connections, though it won't enjoy as much of a speed boost

libRIST Development “Roadmap” Solid

O Improvements in “Reach” and Features
O Boast Stands: We Think We've Achieved the Original
“Interoperability” Goal!

Live Streaming End-to-End w/ Packet Recovery

O High Quality Source Tools Compatible with libRIST
O Supports very Large Audiences
O Security for the IP/Content

Thank You

Live Streaming End-to-End with Packet Recovery and
IbRIST Development Roadmap

By Sergio Ammirata, Ph.D.

