From Containers to Unikernels:

Navigating Integration Challenges in Cloud-Native Environments

Georgios Ntoutsos, Charalampos Mainas, **loannis Plakas**, Anastassios Nanos {gntouts, cmainas, iplakas, ananos}@nubificus.co.uk

Overview

- About us
- Cloud deployment and application packaging, Containers, Sandbox containers, Unikernels
- Challenges of adopting unikernels
- urunc: a container runtime for unikernels
- Demos
- Evaluation

About us

- Team:
 - researchers, engineers & software developers
- Focus:
 - Virtualization stack
 - Container runtimes
 - Hardware acceleration

Containers have dominated

The de-facto solution for application packaging/deployment in Cloud & Edge

- Lightweight
- Fast spawn times
- Portable
- Usable
- Scalable

Containers have dominated

The de-facto solution for application packaging/deployment in Cloud & Edge

- Lightweight
- Fast spawn times
- Portable
- Usable
- Scalable

but...

Containers have a major drawback

- Containers do not isolate:
 - Sharing the same kernel
 - Rely on software components for isolation
 - Numerous exploits

Containers have a major drawback

- Containers do not isolate:
 - Sharing the same kernel
 - Rely on software components for isolation
 - Numerous exploits

Back to (micro)VMs

- Combine containers and VMs
 - Keep the benefits of containers
 - Isolate containers inside Virtual Machines
- Side effects:
 - Higher overhead
 - Complex system stack

Back to (micro)VMs

- Combine containers and VMs
 - Keep the benefits of containers
 - Isolate containers inside Virtual Machines
- Side effects:
 - Higher overhead
 - Complex system stack

Back to (micro)VMs

- Combine containers and VMs
 - Keep the benefits of containers
 - Isolate containers inside Virtual Machines
- Side effects:
 - Higher overhead
 - Complex system stack

(Re)Introducing unikernels

A unikernel is:

- specialized
- single address space
- constructed using a LibOS

Benefits:

- Faster boot times
- Reduced attack surface
- Truly isolated
- Smaller memory/disk footprint

Bringing unikernels to the cloud: What's missing?

- Packaging: Unikernels should look like OCI images
 - o OCI is a well defined and widely used format for container images
- Deployment: Execution of Unikernels differs
 - Container runtimes do not know how to execute Unikernels

urunc: the unikernel container runtime!

- **CRI-compatible** runtime written in Go
- Treats unikernels as processes -- directly manages applications
- Unikernel images for urunc are OCI artifacts
- Makes use of underlying hypervisors to spawn unikernel VMs

urunc: Unikernel OCI images

- Standard OCI images
- Can be managed and distributed using standard tooling (skopeo, umoci etc.) and registries (e.g. dockerhub)
- urunc makes use of specific annotations to function properly:
 - unikernel binary
 - unikernel type
 - hypervisor type
 - o unikernel cmdline
 - o initrd (optional)

urunc: Unikernel OCI images

To simplify image building, we built a **specialized image builder**, called **bima**.

bima uses a dockerfile-like syntax to create OCI images:

```
1 FROM scratch
2
3 COPY test-redis.hvt /unikernel/test-redis.hvt
4 COPY redis.conf /conf/redis.conf
5
6 LABEL com.urunc.unikernel.binary=/unikernel/test-redis.hvt
7 LABEL "com.urunc.unikernel.cmdline"='redis-server /data/conf/redis.conf'
8 LABEL "com.urunc.unikernel.unikernelType"="rumprun"
9 LABEL "com.urunc.unikernel.hypervisor"="qemu"
```

Sample **bima** invocation:

```
$ bima build -t image:tag .
```

 containerd-shim invokes urunc create

 urunc forks itself in a new network namespace, setting up a pty if required, spawning a reexec process, and notifies the parent process

• urunc saves the state and executes createRuntimeHooks

 urunc sends an ACK to the reexec process, executes createContainerHooks and exits gracefully.

- containerd-shim invokes urunc start
- urunc notifies the reexec process to start and executes postStartHooks

- the reexec process sets up network and storage components.
- it executes startContainerHooks and spawns the unikernel.

urunc: Hypervisors

urunc features a extensible design, allowing easy integration for any underlying hypervisor, through the hypervisors package.

Currently, the following hypervisors are supported:

- solo5-hvt / solo5-spt
- QEMU
- firecracker


```
type VMM interface {
          Execve(args ExecArgs) error
          Stop(t string) error
          Path() string
          Ok() error
}
```

urunc: Storage

urunc provides storage to the unikernels via:

- Block device (devmapper snapshotter)
- Initrd (packed inside image rootfs)
- SharedFS

urunc: Network handling

- urunc creates a new tap device tap0_urunc inside the container netns
- CNI provides a veth endpoint inside the netns
- urunc maps all incoming traffic to the tap interface
- urunc maps all outgoing traffic to the veth endpoint

urunc: k8s integration

- to deploy k8s pods, we need to handle non-unikernel containers (eg pause, sidecar containers)
- urunc leverages runc to spawn generic containers
- urunc then spawns the unikernel container inside the Pod netns

urunc: intrapod unikernel - container communication

In some use cases, a normal container is required to communicate with the unikernel. To achieve this, we implement a static network configuration between the tap device and the unikernel.

urunc in action: simple deployment

Simple nginx unikernel spawn

- nerdctl pulls image from registry
- nerdctl "calls" containerd
- containerd unpacks bundle and passes it to urunc
- urunc parses bundle and spawns
 firecracker VM with the provided unikernel

urunc in action: Knative function deployment

Simple Knative function deployment

- Define urunc runtime class
- Apply Kantive service .yaml
- curl endpoint
- Knative Service spawned
- urunc generates serverless workload

Evaluation: Serverless Workloads Spawning

- Compared urunc with various container runtimes:
 - o runc
 - gVisor(runsc)
 - Kata-containers{Firecracker, DragonBall, QEMU, Cloud Hypervisor}
- Utilized Kperf "A benchmarking tool to evaluate Knative performance"
 - Generating and Triggering Knative Services
 - Reporting Service Response Latency
- Used HTTP-reply image as workload

Evaluation: Serverless Workloads Spawning

- Establish Scale-from-Zero Evaluation Scenario:
 - o For *N* iterations:
 - Scale Knative Service (Workload Pod from 0 to 1)
 - Report avg Response
 Latency
 for every container runtime
 (~cold boot time)

Evaluation: Serverless Workloads Spawning

- (most) sandbox container runtimes require 2-2.5 seconds for servicing a request
- generic(runc) and urunc container runtime, request is being served in approximately
 1.20 seconds
- early version of urunc is on par with generic container runtime(runc)

This work is partially funded through Horizon Europe actions, MLSysOps (GA: 101092912) and DESIRE6G (GA: 101096466)

Summary

- containers are great, but lack isolation
- unikernels as an alternative option
- urunc, the missing component for executing Unikernels, as easy as containers
- urunc and generic appear identical in terms of response latency
- unikernels can achieve the same or better performance than generic containers when it comes to serverless functions!

Check out the code on github:

- https://github.com/nubificus/urunc
- https://github.com/nubificus/bima

Check out the evaluation blog post:

https://blog.cloudkernels.net/posts/knative-runtime-eval