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Matrix is an open network for secure, 
decentralised real-time communication.
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Interoperable chat Open comms for VR/ARInteroperable VoIP Real-time IoT data fabric



Our mission:
To build the real-time 

communication layer of the 
open Web.



No single party owns your 
conversations.

 Conversations are shared 
over all participants.
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Visible Monthly Active Users (unbridged!)
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“The most admired synchronous comms tool”
(...and the most desired open source one)

https://survey.stackoverflow.co/2023/#section-admired-and-desired-synchronous-tools

https://survey.stackoverflow.co/2023/#section-admired-and-desired-synchronous-tools


·  LuxChat
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Some Big Public Sector Matrix Deployments

·  Ukraine MOD

·       BwMessenger

·   BundesMessenger

·  Hessen Administration

·    NRW Schools

·  UK Govt

·   US Govt

·    openDesk

·    Phoenix Suite

·  Poland MOD

·   Sweden
·  Bavaria Schools

·   NATO

Size of deployment

· gematik

Size of financial support 
to the Matrix core team 
in 2023

·
·  France (Tchap)



● COVID funding evaporated + general macroeconomic slowdown

● Lots and lots of large deployments not helping funding underlying dev.

● “Public Money For Public Code” ⇒ Govts only want to fund new features.

● This has forced focus - on Matrix 2.0, Synapse, matrix-rust-sdk (Element X) 
and matrix-js-sdk (Element Web & Element Call) - and nothing else.

● Everything else is paused: P2P Matrix, Pseudo IDs, Crypto IDs, Account 
Portability, Low Bandwidth Matrix, Element-funded Dendrite work

● …critical bugfixes only: matrix-ios-sdk & matrix-android-sdk
(Element iOS/Android); libolm (replaced by vodozemac)

● …or gone: Third Room.

● ⇒ Element ended up switching its development on Synapse to AGPL in 
order to sell AGPL exceptions to those who need them.
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2023 was a really rough year.



● The Foundation now runs entirely independently, with Josh Simmons as MD!

● Setting up a Governance Board from across the ecosystem 
to steer the direction of the project - elections in April 2024.

● Fundraising right now to support core spec work, trust &
safety work, bridging improvements, running the matrix.org
infrastructure and governance work - target £900K.

● To support, join the Foundation: https://matrix.org/membership/

● Meanwhile, much of github.com/matrix-org is written and maintained by the 
core team hired by Element, who donates their time to the project - please 
support them by buying enterprise Matrix deployments from Element if 
you’re a Government or Enterprise.
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For Matrix to prevail, we need your support.

https://matrix.org/membership/
https://github.com/matrix-org
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Current members and supporters…

…and >716 individual donors!



Matrix 2.0 Status



● We announced the idea of Matrix 2.0 at FOSDEM 2023

● Mission: to make Matrix as fast and usable as the mainstream alternatives:

○ Sliding Sync (MSC3575)

○ Faster Joins (MSC3902)

○ Native VoIP (MSC3401)

○ OpenID Connect (MSC3861)

● Not a new spec release (yet).

● Showcased in matrix-rust-sdk, as used in Element X and GNOME Fractal 5

● Back at FOSDEM 23 last year, this was distinctly alpha :D

● In Sept 2023, it became available to everyone with Element X Ignition!
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Matrix 2.0



Demo!
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Sliding Sync
● Thesis: the server should only tell the client about the rooms the client 

needs to display - O(1) with number of rooms, not O(N).

● It’s been a bit of a journey :D

● Reworked the matrix-rust-sdk implementation; added unread rooms state!

● What is the right balance between server-side and client-side ordering?

● Original idea: order rooms serverside, clients get a sliding window & receive 
ops to update it; and fix up ordering clientside ⇒ optimal solution! 🎉

● Problem: only clients know the right order for E2EE rooms, and E2EE 
rooms are pretty common these days. Also, the “fix up” is horribly fragile 🫠

● Solution: sort primarily on the client (and use coarse heuristics on the server 
to incrementally send most relevant rooms first) ⇒ “Pragmatic Sync”.

● This is basically a subset of Sliding Sync, without the *cough* sliding bit.



● Client-side ordering is in flight:
○ https://github.com/matrix-org/matrix-rust-sdk/pull/3068 (opened a few days ago) 

● We’re not thinking about native Sliding Sync implementations serverside 
until we’ve finished iterating (i.e. simplifying) the current API.

● Meanwhile, it’s really easy to run your own Sliding Sync proxy:
git clone https://github.com/matrix-org/sliding-sync && cd sliding-sync

go build ./cmd/syncv3 

createdb syncv3

echo -n "$(openssl rand -hex 32)" > .secret

SYNCV3_SECRET=$(cat .secret) SYNCV3_SERVER="https://matrix.example.com" SYNCV3_DB="user=$(whoami) 
dbname=syncv3 sslmode=disable password='hunter42'" SYNCV3_BINDADDR=127.0.0.1:8009 ./syncv3

# route /_matrix/client/unstable/org.matrix.msc3575/sync to your 127.0.0.1:8009

# add "org.matrix.msc3575.proxy": { "url": "https://matrix.example.com" }
# to https://example.com/.well-known/matrix/server 
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Sliding Sync

https://github.com/matrix-org/matrix-rust-sdk/pull/3068
https://github.com/matrix-org/sliding-sync
https://example.com/.well-known/matrix/server


● We finally have stable, end-to-end encrypted, scalable, VoIP!

● Calling and E2EE signalled over Matrix

● Uses LiveKit as an Selective Forwarding Unit

● Built on matrix-js-sdk

● Runs on https://call.element.io as a Single Page App

● Also embedded in Element X and Element Web (if you turn it on in 
labs, replacing Jitsi) - using the host client for encryption!

● When embedded, streams are encrypted per-sender!

● Interoperates with FluffyChat - see the talk in the devroom later today!

● Next up: finalising the spec and turning on by default everywhere!
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Native E2EE Group VoIP

https://call.element.io


● The great transition to native OpenID Connect is in full swing!

● So many benefits:
○ Support 2FA, MFA, Passkeys etc via an OIDC IdP!

○ Login via QR code, complete with E2EE identity! (almost)

○ No more implementing Matrix auth flows on every client (and homeserver)!

○ Users only ever send their password to their server, not random clients

○ Consistent auth and account management experience across apps

○ Integrates seamlessly with password managers

○ Lets users share authentication between apps (SSO)

○ Finally gives access-token refresh by default

○ OIDC scopes let users control what features an app can access.
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Native OpenID Connect
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Native OpenID Connect



● You can run matrix-authentication-service (MAS) today alongside 
Synapse as a small Matrix-aware OIDC IdP (written in Rust!)

● MAS provides UI for login, permissions, Matrix account management 
in a standard OIDC form factor.

● Hooks into Synapse to wrangle accounts and devices.

● Migration is now available in syn2mas:
○ https://matrix-org.github.io/matrix-authentication-service/setup/index.html 

● Provides some backwards compatibility for Matrix auth, but right now 
missing account deactivation, device kick-out and email bindings.

● Requires a Native OpenID capable client: Element X, Element Web 
available in Labs.
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Native OpenID Connect

https://matrix-org.github.io/matrix-authentication-service/setup/index.html


● Clientside Matrix 2.0 implementation has been 
happening in matrix-rust-sdk and Element X
○ Sliding sync + OIDC support

● All new matrix-sdk-ui crate for providing higher 
level UI abstractions:
○ Lazyloaded ordered roomlist

○ Lazyloaded precomputed timelines

○ Sync spinner

○ Filters…
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matrix-rust-sdk
Element X

matrix-rust-sdk

matrix-sdk-crypto

vodozemac

sqlite

SwiftUI on 
iOS

Jetpack 
Compose on 

Android

uniffi Kotlin 
bindings

uniffi Swift 
bindings

matrix-sdk-ui



● At last, matrix-js-sdk and matrix-rust-sdk have 
converged on the same E2EE implementation: 
matrix-sdk-crypto from matrix-rust-sdk.

● Merged in matrix-react-sdk on Friday!!!!
○ https://github.com/matrix-org/matrix-react-sdk/pull/12203 

○ https://github.com/element-hq/element-web/pull/26939 

● Fix E2EE bugs in one place, and get a single 
reference codebase audited.

● Also landed in matrix-android-sdk2 and 
matrix-ios-sdk in 2023.

● No more libolm! vodozemac ftw! 🦀🦀🦀
21

matrix-sdk-crypto in matrix-js-sdk

Element “R” Web

matrix-react-sdk

matrix-js-sdk

matrix-rust-sdk-crypto

vodozemac

IndexedDB

https://github.com/matrix-org/matrix-react-sdk/pull/12203
https://github.com/element-hq/element-web/pull/26939


● Now that everyone is finally speaking matrix-rust-sdk for crypto, we 
can fix the remaining reliability issues in one place.

● complement-crypto is one of our main weapons in the fight.
○ Tests matrix-rust-sdk and matrix-js-sdk against real homeserver federations 

(running in docker)

○ Written in Golang, built on complement

○ Includes torture tests and unhappy-path tests

○ Failing tests for all remaining known issues.

● The race is on!

● (And then… as if by magic…
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Crypto reliability



● Now that everyone is finally speaking matrix-rust-sdk for crypto, we 
can fix the remaining reliability issues in one place.

● complement-crypto is one of our main weapons in the fight.
○ Tests matrix-rust-sdk and matrix-js-sdk against real homeserver federations 

(running in docker)

○ Written in Golang, built on complement

○ Includes torture tests and unhappy-path tests

○ Failing tests for all remaining known issues.

● The race is on!

● (And then… as if by magic… a draft PQXDH PR appeared)
○ https://github.com/matrix-org/vodozemac/pull/120
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Crypto reliability

https://github.com/matrix-org/vodozemac/pull/120
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● Actually releasing this all as Matrix 2.0

● …and get it all audited!

● Native Sliding Sync

● Replacing matrix-{ios,android}-sdk with matrix-rust-sdk entirely

● Get matrix-react-sdk talking Sliding Sync
○ …or think about replacing matrix-js-sdk with matrix-rust-sdk? 😈

● Foundation-funded Trust & Safety work

● Foundation-funded bridging work.

● …and DMA.

What’s next?



The Digital Markets Act
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The Digital Markets Act

● The EU Digital Markets Act mandates that communication services from 
big tech companies must interoperate together.

● Lets users pick their preferred service without sacrificing interoperability.

● Forces gatekeepers to differentiate based on quality, rather than relying on 
the network effects of a silo.

We are here!
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The Digital Markets Act

● Once in a lifetime opportunity to see if we can use Matrix as a common 
language to talk to the large messaging providers!

● DMA requires gatekeepers to provide same level of E2EE for interoperability 
as for their existing service. Three options:

1. Open APIs + polyglot (aka multihead) messengers - e.g. Beeper Mini

2. Client-side bridging - install a “Gatekeeper<>Matrix app” to copy 
traffic back & forth between the gatekeeper service & Matrix.

■ We demoed this to the EC using WhatsApp and Google Chat in Feb 2023: 
https://matrix.org/blog/2023/03/15/the-dma-stakeholder-workshop-interoperability-between-messaging-services/  

3. Everyone talks the same protocol (i.e. the gatekeeper protocol gets 
converted into Matrix or similar).

● However, over the last year we’ve been experimenting with Option 3.

https://matrix.org/blog/2023/03/15/the-dma-stakeholder-workshop-interoperability-between-messaging-services/


● Two big challenges:

○ The gatekeeper has to speak the same end-to-end encryption protocol 
(but doesn’t have to speak the same signalling protocol)

○ Everyone has to use the same content format within the E2EE payloads.

● Good news: we picked The Double Ratchet for Matrix’s encryption back in 
2015 because it was best of breed and everyone was converging on it:

○ Signal, WhatsApp, Google Allo + Messages, Skype, Viber, Wire, Wickr...

● ⇒ Pretty much everyone (other than Apple) uses libsignal (or 
libolm/vodozemac) under the hood for their E2EE today.

● Bad news: Matrix’s dialect (Olm) isn’t interoperable with libsignal.
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DMA Challenges



● Matrix’s version of the Double Ratchet is called Olm (a type of salamander)

● Clean-room implementation of the Double Ratchet.

● We specced it back in 2015: 
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md 

● Unlike libsignal, Olm normally uses separate keys for identity (Curve25519) 
and signing (Ed25519). It doesn’t use X3DH and X25519.

● There are two Apache-licensed implementations:

○ 2016: libolm (C++11 with a C API)

○ 2022: vodozemac (Rust)

● However, while working on DMA experiments, we have now added 
X3DH support to vodozemac, and so it interoperates with libsignal. 
We’ve calling the new dialect “interolm”: https://github.com/matrix-org/vodozemac/pull/124 

A brief history of Olm

https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://github.com/matrix-org/vodozemac/pull/124
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Hypothetical Matrix-for-DMA architecture

Matrix client
(e.g. Element X Android)

common content format (e.g. 
Matrix events as protobuf)

vodozemac in X3DH mode

Normal Matrix events

Normal Matrix client stack 
(e.g. matrix-rust-sdk)

Matrix homeserver
(e.g. Synapse)

Client Server 
API

Application 
Service API

MSC3983 - Sending OTK 
claims to ASes

MSC3984 - Sending E2EE 
key reqs to ASes

Protocol Converter
Application Service
(i.e. E2EE-capable 

Bridge)

DMA 
Gatekeeper 

Service

DMA gatekeeper client

common content format (e.g. 
Matrix events as protobuf)

libsignal

Existing signalling protocol

Existing client stack



Gatekeeper 1

Hypothetical Matrix-for-DMA architecture

Gatekeeper 2

Matrix<>GK2
Protocol 
Converter AS

Matrix<>GK1
Protocol 
Converter AS

Matrix clients
Gatekeeper 
clients
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● Yes, this could work.

● We’ve now done experimental implementations with WhatsApp as a 
not-so-hypothetical gatekeeper & it seems viable, complete with E2EE.

● However, we don’t yet know what will happen come March.

● There are some challenges:

○ What sort of permissions would be needed for someone on Matrix to use 
such a protocol converter? (Would the organisation running the Matrix 
server have to Request access to the gatekeeper under DMA Article 7?)

○ Would the end-user device have to expose a stable identifier (e.g. an 
obfuscated IP address) to the gatekeeper to help with anti-spam?

○ Group chat is unsolved (but not in scope of DMA until 2026). As a first 
cut, one could just fan out DR session (like Matrix did before Megolm).

Does it work?



● DMA doesn’t mandate decentralised conversation history, so gatekeepers 
might see Matrix as overkill when implementing it natively.

● Is there a lighter architecture that could work?

● What if we had a protocol which was compatible with Matrix, but skipped the 
complexities of state resolution and full decentralization (knowing that it can 
be upgraded to full decentralized Matrix when needed)?

● ⇒ Linearized Matrix: https://datatracker.ietf.org/doc/draft-ralston-mimi-linearized-matrix/ 

● Same old Matrix events and power levels, etc - but stored in a linked list 
rather than a DAG, with a hub and spoke server topology.

● When linked to normal Matrix, the server which does the linking handles the 
decentralisation.

● Example implementation in https://github.com/matrix-org/eigen-server 
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Linearized Matrix

https://datatracker.ietf.org/doc/draft-ralston-mimi-linearized-matrix/
https://github.com/matrix-org/eigen-server
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Hub server
(for the conversation)

Matrix 
clients

Matrix Homeservers

DMA 
interoperating 
providers

Matrix
Network view for a given conversation
Overall connectivity

Hypothetical Linearized Matrix concept
(N.B. not real gatekeepers!)



● MIMI is the More Instant Messaging Interoperability Working Group in IETF

● Started by folks from the MLS (Messaging Layer Security) working group

● Seeks to define a long-term protocol specifically for DMA interoperability.

● We’ve been participating since the outset (IETF114 in Philadelphia, Jun 2022)

● At first proposed Matrix - rejected as decentralised rooms seen as overkill.

● Then proposed Linearized Matrix - rejected due to concerns about it still being too 
rich, e.g:

○ Does DMA even need message history? does it need state events?

○ Why have an event DAG at all, linearized or otherwise?

○ Why do you need auth events?

● Big debate over whether MIMI should support interoperability with today’s 
protocols, or hard-code the design to use MLS for encryption. 35

Introducing MIMI



● Formed a Design Team (Matrix, Cisco, Google, Wire, Phoenix, Wickr) to try to 
build something from the ground up which would provide an “on-ramp” from 
Double Ratchet (DR) to MLS

○ To provide interop with today’s real-world DR platforms (e.g. Matrix!)

○ To act as a low-friction way to steer everyone to talk MLS long-term.

● Result: https://datatracker.ietf.org/doc/draft-ralston-mimi-protocol/ (IETF118)

● If you have MLS, it uses it to synchronise state over the servers.

● If you don’t have MLS, you’d need something like a Matrix room graph.

● The layering ended up being over-complex, though, and there’s now a new 
proposal from Wire at https://github.com/bifurcation/mimi-protocol 

● Currently trying to merge the two drafts together (yay, teamwork.)

● Meanwhile, to solve today’s DMA challenges, we’re using plain old Matrix.36

MIMI drafts

https://datatracker.ietf.org/doc/draft-ralston-mimi-protocol/
https://github.com/bifurcation/mimi-protocol


● No idea :D

● Let’s see what DMA APIs Meta ships on March 7th

● Element looks to have been the first organisation to implement against them, 
so whatever happens, hopefully it’ll involve Matrix!
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What comes next?



We need help!!
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FRIENDS DON’T LET FRIENDS
USE PROPRIETARY CHAT SERVICES

• If you benefit commercially from Matrix -
 PLEASE financially support the Foundation

• Run a server (or get an enterprise one from Element)

• Build bridges and bots to your services!

• Build your cool new project on Matrix!

• Follow @matrix@mastodon.matrix.org & spread the word
39

https://matrix.org/membership/ 

mailto:matrix@mastodon.matrix.org
https://matrix.org/membership/


Thank you!
@matthew:matrix.org
matthew@matrix.org

https://matrix.org 
@matrixdotorg

@matrix@mastodon.matrix.org
@matrix.org
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http://matrix.org/
mailto:matrix@mastodon.matrix.org

