
The wonderful life of a SQL

query in a streaming database

1

RisingWave Labs

- Creator of the RisingWave Database

- OLAP streaming queries

- Incremental updates on materialized views

2

Views and Materialized Views

- What is a view?

- What is a MV?

- How do you calc views traditionally?
- Full rebuild is expensive

- Incremental updates
- Run aggregate on diff

- Run background job that detects changes in base table

- Triggers that fire if there is a change to the underlying table

- RisingWave: Incremental updates

3

4

Streaming graph

CREATE TABLE stories (id int, author int, title text, url text);

CREATE TABLE votes (user int, story_id int);

CREATE MATERIALIZED VIEW StoriesWithVC AS

SELECT id, author, title, url, vcount

FROM stories

JOIN (SELECT story_id, COUNT(*) AS vcount FROM votes GROUP BY story_id) as VoteCount

on VoteCount.story_id = stories.id;

5

EXPLAIN CREATE MATERIALIZED VIEW StoriesWithVC AS

SELECT id, author, title, url, vcount

FROM stories JOIN (SELECT story_id, COUNT(*) AS vcount FROM votes GROUP BY story_id) AS VoteCount

ON VoteCount.story_id = stories.id;

 StreamMaterialize { columns: [id, author, title, url, vcount, ...] }

 └─StreamExchange

 └─StreamHashJoin { type: Inner, predicate: stories.id = votes.story_id }

 ├─StreamExchange { dist: HashShard(stories.id) }

 │ └─StreamTableScan { table: stories, columns: [id, author, title, url, _row_id] }

 └─StreamHashAgg { group_key: [votes.story_id], aggs: [count] }

 └─StreamExchange { dist: HashShard(votes.story_id) }

 └─StreamTableScan { table: votes, columns: [story_id, _row_id] }

6

EXPLAIN CREATE MATERIALIZED VIEW StoriesWithVC AS

SELECT id, author, title, url, vcount

FROM stories JOIN (SELECT story_id, COUNT(*) AS vcount FROM votes GROUP BY story_id) AS VoteCount

ON VoteCount.story_id = stories.id;

 StreamMaterialize { columns: [id, author, title, url, vcount, ...] }

 └─StreamExchange

 └─StreamHashJoin { type: Inner, predicate: stories.id = votes.story_id }

 ├─StreamExchange { dist: HashShard(stories.id) }

 │ └─StreamTableScan { table: stories, columns: [id, author, title, url, _row_id] }

 └─StreamHashAgg { group_key: [votes.story_id], aggs: [count] }

 └─StreamExchange { dist: HashShard(votes.story_id) }

 └─StreamTableScan { table: votes, columns: [story_id, _row_id] }

7

8

9

Node 1

Node 2

Node 3

10

11

12

13

14

15

16

17

18

19

20

21

Distributed systems

22

Challenges and opportunities in a distributed setup

- Opportunity:
- Execute in parallel

- Challenges:
- Recovery: Trying not to lose data when a node crashes

- Scalability: Adding/removing nodes if you have more/less workloads

23

Distributed systems
Parallelism

24

25

26

27

28

29

30

31

32

33

Distributed systems
Recovery

34

35

36

37

38

39

40

41

42

Distributed systems
Scaling

43

44

45

46

47

48

49

50

51

52

Thank you!

53

Try RisingWave:

54

Ask questions:

