
The wonderful life of a SQL 

query in a streaming database

1



RisingWave Labs

- Creator of the RisingWave Database 

- OLAP streaming queries

- Incremental updates on materialized views
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Views and Materialized Views

- What is a view?

- What is a MV? 

- How do you calc views traditionally?
- Full rebuild is expensive

- Incremental updates 
- Run aggregate on diff 

- Run background job that detects changes in base table

- Triggers that fire if there is a change to the underlying table

- RisingWave: Incremental updates 
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Streaming graph

CREATE TABLE stories (id int, author int, title text, url text);

CREATE TABLE votes (user int, story_id int);

CREATE MATERIALIZED VIEW StoriesWithVC AS

SELECT id, author, title, url, vcount

FROM stories

JOIN ( SELECT story_id, COUNT(*) AS vcount FROM votes GROUP BY story_id) as VoteCount

on VoteCount.story_id = stories.id;
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EXPLAIN CREATE MATERIALIZED VIEW StoriesWithVC AS

SELECT id, author, title, url, vcount

FROM stories JOIN (SELECT story_id, COUNT(*) AS vcount FROM votes GROUP BY story_id) AS VoteCount

ON VoteCount.story_id = stories.id;

-------------------------------------------------------------------------------------------------

 StreamMaterialize { columns: [id, author, title, url, vcount, ...] }

 └─StreamExchange

   └─StreamHashJoin { type: Inner, predicate: stories.id = votes.story_id }

     ├─StreamExchange { dist: HashShard(stories.id) }

     │ └─StreamTableScan { table: stories, columns: [id, author, title, url, _row_id] }

     └─StreamHashAgg { group_key: [votes.story_id], aggs: [count] }

       └─StreamExchange { dist: HashShard(votes.story_id) }

         └─StreamTableScan { table: votes, columns: [story_id, _row_id] }
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Distributed systems
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Challenges and opportunities in a distributed setup

- Opportunity:
- Execute in parallel

- Challenges:
- Recovery: Trying not to lose data  when a node crashes 

- Scalability: Adding/removing nodes if you have more/less workloads
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Distributed systems
Parallelism
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Distributed systems
Recovery
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Distributed systems
Scaling
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Thank you!
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Try RisingWave:
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Ask questions:


