
Zero-Touch OS Infrastructure
for Container and Kubernetes Workloads

February 3, 2024

Containers Devroom, FOSDEM'24



Hello, I'm

Thilo

Thilo Fromm

Flatcar Maintainer

Github: t-lo

Mastodon: @thilo@fromm.social
Email: thilofromm@microsoft.com

http://t-lo.github.io/
https://fromm.social/@thilo
mailto:thilofromm@microsoft.com


Outline

Foundational Concepts

Fresh & Stable: Staying up to Date, safely

Composability

Community



Container Optimised Linux



Rethink the OS as a replaceable commodity

Operate the OS like a container app or pod

Image-Based OS: Nodes are instances

Leverage container isolation from the OS side

Container Optimised Linux



UX Philosophy



UX Philosophy



UX Philosophy



Container / Kubernetes App Provisioning



OS Provisions like a Container App



Bootstrap Initial Apps when Provisioning



Provisioning

Demo



Sensible defaults, no boilerplate
Focus on your business logic

Storage, networking, users, ssh, systemd units – only if you need these

Inline / download custom directories and files

No config drift

Configured at first boot / during provisioning

New and existing (updated) node configs do not differ

Extensive Automation
OS supports many cloud providers and private clouds, support is growing

Terraform integration, Go bindings

ClusterAPI integration

Operate the OS like a Container App or Pod



Configuration applied once, at provisioning time



Supported out-of-the box by Core CAPI and image-builder

Multiple large vendors are supported

  AWS

  Azure

  VSphere

  OpenStack

  Tinkerbell (via Sysexts)

GCP support is work-in-progress.

Piloting sysext CAPI deployments (composed at provisioning, updatable)

Large-Scale deployments? ClusterAPI!



Provisioning and updates are immutable images
Always built from scratch, always fully tested. Self-contained, all bits included.

No version drift: releases are frozen version sets

No difference between new and existing (updated) nodes

All OS binaries on a separate, immutable partition

Everything is in /usr, read-only and dm-verity protected

In-place updates via A/B partitions

Retains node state - DB node operators rejoice!

Updates are atomic, roll-backs are easy

Image-Based OS



Container apps are self-contained and run isolated
From each other, but also from the OS

Few and well-defined dependencies on the OS

No inter-dependencies OS <-> App
No shared libraries / binaries

No shared configuration

➔ Portable Applications

Leverage Container Isolation



Well-defined interfaces OS <-> App
Very few components, easy to test thoroughly

No other inter-dependencies

Container apps isolate from the OS

Runtime + Kernel is a Contract
App relies on contract and nothing else

OS guarantees and fulfils contract

➔ Interchangeable OS
Main Focus on upholding

   runtime contract

Contract

Leverage Container Isolation from the OS side

User
Workloads



Contract is well-testable (and rigorously tested)

Interchangeable OS



Contract is well-tested

Always upheld across releases

Interchangeable OS

Contract

v3510.2.8

Contract

v3602.2.4

Contract

v3760.2.0

== ==



Contract is well-tested

Always upheld across releases

Contract is our “light switch”

Interchangeable OS



Staying up to date

Atomic In-Place Updates



Atomic In-Place Updates

   1. Stage

Staying up to date



Atomic In-Place Updates

   1. Stage

   2. Activate (Reboot)

Staying up to date



Atomic In-Place Updates

   1. Stage

   2. Activate

   3. Done

Staying up to date



Atomic In-Place Updates

   1. Stage

   2. Activate

   3. Done?

Staying up to date



Atomic Roll-Backs

   1. Stage

   2. Activate

   3. Done?

   4. Roll Back

Staying up to date



Atomic Roll-Backs

 1. Stage

   2. Activate

   3. Done?

   4. Roll Back

       to known-good state

Staying up to date



Update

Demo

(Usually automated.

  Manual ONLY

  for demo purposes)



Updates need Reboots
Maintenance windows (date / time)

Sync via custom etcd lock (max number of nodes to reboot)

Kubernetes: update operator (FLUO, KureD) w/ node draining, reboot, un-cordoning

Stateful, FOSS update server
Nebraska project - “Omaha” protocol used by chromium

Easy to self-host. For large fleets – custom grouping, staggered roll-out, version overview, etc.

Users part of the stabilization process
Run canaries and keep your workloads safe

Rolling out Updates



Major OS release stabilisation milestones:
"Alpha"   Fully tested but may contain incomplete features. For developers.

"Beta"    Fully tested for production use. Recommended for canaries

"Stable"  For widespread production use.

                Additional stabilisation through user feedback from Beta canaries.

Deployments defaults to "stable" but can be customised to any channel.

Stabilisation Process



Use stable for most workloads, and run a few Beta canaries
Each Beta is fully tested

Canaries smoke-test incoming changes and detect issues with your workload

    (And roll-back is easy!)

Report Issues detected by canaries
The issue will be fixed in the next Beta, before changes go stable

==> Your clusters will receive stable versions that are proven to work

Participate in the Stabilisation Process



Composability



OS-level extensibility via Systemd Sysext

OS is immutable
Nice set of tools, but I need podman/Kubernetes/WASM/…

Extensible via systemd-Sysexts
Immutable filesystem images that ship custom libraries / binaries as full root FS tree

                                                                       (only /usr and /opt subtrees supported)

A/B updates independent from OS via systemd-sysupdate (via HTTPS server, e.g. Github Release)

Flatcar makes extensive use of sysexts
Bundled with the base OS and updated in lock-step, e.g. OEM / guest tools

Independent of the base OS with custom update cycle, e.g. Kubernetes sysext for CAPI, WASM, …



Using Sysexts

/usr/
 /lib/
   libdep1.so
   libdep2.so
   libmytool.so
 /bin/
   mytool

Sysext image

/usr/
 /lib/
   libc.so
   libcrypt.so
   ….
 /bin/
   cat
   ls
   ...

Root FS

Merge

/usr/
 /lib/
   libc.so
   libcrypt.so
  libdep1.so
  libdep2.so
  libmytool.so
   ….
 /bin/
   cat
   ls
   mytool
   ...

Root FS



Building Sysexts

/usr/
 /lib/
   libdep1.so
   libdep2.so
   libmytool.so
 /bin/
   mytool

sysext

src/
  ...

build/
 libdep1.so
  libdep2.so
  libmytool.so
  mytool

Build system

copy

usr/
 /lib/
  libdep1.so
  libdep2.so
  libmytool.so
 /bin/
   mytool

Subdirectory

mkfs,
mkosi,

etc.



Image composability

Pre-bake images
Add custom sysexts + configuration to stock Flatcar release image

Update via self-hosted sys

Compose at provisioning time
Use declarative configuration to download & configure, sysupdate to update

CAPI pilot
Proof-of-concept Kubernetes sysext composed into stock image during provisioning

CAPO, Tinkerbell are supported, CAPA, CAPZ, and CAPV work in progress.



Sysext

Demo



Community



Flatcar
Community

Community-driven FOSS project
No single vendor, full community stewardship

Submitted to the CNCF as incubation project (ongoing)

Roadmap, Implementation, Releases

Matrix, Slack - Our day-to-day comms

Office hours - Every 2nd Tuesday, 3:30pm UTC

Dev Sync    - Every 4th Tuesday, 3:30pm UTC

https://github.com/orgs/flatcar/projects/7/views/9
https://github.com/orgs/flatcar/projects/7
https://github.com/orgs/flatcar/projects/7/views/8
https://app.element.io/#/room/
https://kubernetes.slack.com/archives/C03GQ8B5XNJ
https://github.com/flatcar/Flatcar#monthly-office-hours-and-developer-syncs
https://github.com/flatcar/Flatcar#monthly-office-hours-and-developer-syncs


Focus on low entry bar to OS Development
(Some Gentoo knowledge is useful though)

Used by Maintainers and in our automation

Includes easy-to-run, full test suite

Portable,
Easy to use
SDK

git clone https://github.com/flatcar/scripts.git
cd scripts
git checkout alpha-3794.0.0

./run_sdk_container –t ./build_packages

./run_sdk_container –t ./build_image

./image_to_vm.sh --from=../build/images/amd64-usr/latest/ \
        --format=qemu_uefi --image_compression_formats none

./run_local_tests.sh

https://github.com/flatcar/scripts.git


Wrap Up

Leverage Isolation of OS and Apps 

Declarative Configuration at Provisioning

Atomic, Automated Updates

Composable images with Sysext

Community driven, submitted to CNCF



The Community’s
Container Linux

Thank you


	Slide 1
	Slide 2: Hello, I'm  Thilo
	Slide 3: Outline
	Slide 4: Container Optimised Linux
	Slide 5: Container Optimised Linux
	Slide 6: UX Philosophy
	Slide 7: UX Philosophy
	Slide 8: UX Philosophy
	Slide 9: Container / Kubernetes App Provisioning
	Slide 10: OS Provisions like a Container App
	Slide 11: Bootstrap Initial Apps when Provisioning
	Slide 12
	Slide 13: Operate the OS like a Container App or Pod
	Slide 14: Configuration applied once, at provisioning time
	Slide 15: Large-Scale deployments? ClusterAPI!
	Slide 16: Image-Based OS
	Slide 17: Leverage Container Isolation
	Slide 18: Leverage Container Isolation from the OS side
	Slide 19: Interchangeable OS
	Slide 20: Interchangeable OS
	Slide 21: Interchangeable OS
	Slide 22: Staying up to date
	Slide 23: Staying up to date
	Slide 24: Staying up to date
	Slide 25: Staying up to date
	Slide 26: Staying up to date
	Slide 27: Staying up to date
	Slide 28: Staying up to date
	Slide 29
	Slide 30: Rolling out Updates
	Slide 31: Stabilisation Process
	Slide 32: Participate in the Stabilisation Process
	Slide 33: Composability
	Slide 34: OS-level extensibility via Systemd Sysext
	Slide 35: Using Sysexts
	Slide 36: Building Sysexts
	Slide 37: Image composability
	Slide 38
	Slide 39: Community
	Slide 40: Flatcar Community
	Slide 41: Portable, Easy to use SDK
	Slide 42: Wrap Up
	Slide 43

