MULTI-IMAGE
SINGLE CONTAINER

LLLLLLLLLLLLLLL
TTTTTTTTTT

What is StartOS?

* A Linux distribution designed to enable non-
technical users to self-host open source software

MIT licensed

interface (webui)

* Sits on top of Debian, but doesn't use Debian

packages

Rust Monolith, with Angular/Typescript user

Background

START Installed Services
g Bitcoin Ce . BTCPay S
DDDDDDDDD
nnnnn ing Running
L4 o Burn Afte L4 . Core
|\l‘. Running Running
L CryptPad L] Ghe
Running b Running il " 3
& Git ® iz Instalied Services
u . et
Running Running . L
L] @ JAM L] e =)
nnnnnnn @ Running ‘ Rumnieg
. A
= .
® i ° Men .
¥] b
........... w
L4 Meste ® i . Fai
o @ =
f—
® Sear L » Start ® —~ &
§ _r'm}.'
......... = Running —
& comected S CE e w
. |

One Container =
One Service/App

Reduces complexity

One VLAN IP address
Fewer virtual interfaces
One set of resource limits

One in-container service manager

Background
[

Why multiple
containers?

Use pre-packaged docker images
ie. Nginx, Postgresql, Redis, etc.

Don't worry about distro
compatibility

Isolate application sub-components
from each other

Create resource limits on
individual application
subcomponents

207

Background
[

Why multiple
containers?

Use pre-packaged docker images
ie. Nginx, Postgresql, Redis, etc.

Don't worry about distro
compatibility

Isolate application sub-components
from each other

Create resource limits on
individual application
subcomponents

Background
[

Background
[

Why LXC?

Easily manipulate container

rootfs from host at runtime Perform chroot and
mount --bind inside
— Requires rshared mount unprivileged container

propagation

Our Strategy

Loads package maintainer scripts

Single rootfs image, mounted with overlayfs

Runs Alpine Linux with NodeJS Serves J[SONRPC API over unix domain socket

Custom Javascript service manager:

Connects to host (StartOS Daemon), also over
JSONRPC unix domain socket

Launches binaries in chroots

Our Strategy

Connection Dependency Integration Hassle free networking
* Attach overlayed package * Interact with other services on . Tor
Images to container host e SS|
rootfs * signed by host root CA,
- mount -t overlay not Data * Bind to host port for LAN access

* Listen on clearnet
* dynamic DNS
* automatic letsencrypt ssl certs
* share ports with SNI based SSL

Proxy

possible in unprivileged

. * Export information to
LXC container

end user

Our Strategy
.

Service API

Administration
° INnit
e start
* stop
* exit

Respond to user-initiated actions

* edit config

* install / update / uninstall
hooks

* perform backup

* etc...

Our Strategy

Package maintainer script defines: For each command, in-container service manager:

— Calls host api to mount overlayed image to
container

— What binaries to launch

— Which image to launch each binary in — Bind mounts /proc, /sys, /dev, and /run inside

the overlayed image
— Where to mount persistence volumes

— Bind mounts persistence volumes at

— Environment variables & arguments requested paths (provided by host at
/media/startos/volumes)

— Runs chroot <overlay path> <command> <args>

An Example
I

Package Maintainer Script

import { sdk } from '../sdk’

import { ExpectedExports } from '@start9labs/start-sdk/lib/types’

import { HealthReceipt } from '@start9labs/start-sdk/lib/health/HealthReceipt’
import { Daemons } from '@start9labs/start-sdk/lib/mainFn/Daemons’

import { uiPort } from './interfaces'

export const main: ExpectedExports.main = sdk.setupMain(
async ({ effects, utils, started }) => {

J**E

La Qe TR B I R - FU R 6 R]

*

* In this section, you will fetch any resources or run any commands necessary to run the service
*

console.info('Starting Hello World!')

Additional Health Checks (optional) ======
* In this section, you will define *additional* health checks beyond those associated with daemons

*1
const healthReceipts: HealthReceipt[] = []

! *

e arseE=eeaee== DgemMORs ==

In this section, you will create one or more daemons that define the service runtime

Each daemon defines its own health check, which can optionally be exposed to the user
/
return Daemons.of({
effects,
started,
healthReceipts, // Provide the healthReceipts or [] to prove they were at least considered
]
.addDaemon('db', {
imageId: 'postgres’',
command: 'docker-entrypoint.sh', // The command to start the daemon
Teady: {
/¢ If display is null, it will not be displayed to the user in the UL
display: 'Database’,
// The function to run to determine the health status of the daemon
fn: () =>
sdk.healthCheck.checkPortListening(effects, 5432, {
successMessage: 'The database is ready’,
errorMessage: 'The database is not ready',

})J’

b
requires: [],
}
.addDaemon('webui’, {
imageld: 'main’',
command: 'hello-world', // The command to start the daemon
Teady: {
{4 If display is null, it will not be displayed to the user in the UI
display: 'Web Interface',
/t The function to run to determine the health status of the daemon
fn: () =>
sdk.healthCheck.checkPortListening(effects, uiPort, {
successMessage: 'The web interface is ready',
errorMessage: 'The web interface is not ready',

})J

I
requires: ['db'],

})

An Example
I

Demo

An Example
I

Q&A

Relevant Links
A

Com Pany https://start9.com
Me https://github.com/dr-bonez
StartOS https://github.com/Start9Labs/start-

os/tree/feature/Ixc-container-runtime

THANK YOU

@DRBONEZ:MATRIX.STARTO9LABS.COM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

