Are Project Tests Enough for
Automated Dependency Updates?

A Case Study of 262 Java Projects on Github

Joseph Hejderup
04-02-2024

ENDOR 7
WN=LS TUDelft

Member of Technical Staff, Endor Labs, Inc.
PhD Candidate, TU Delft, the Netherlands

Main Interests:

- Scaling Program Analysis
- Software Supply Chain Security

Automated Dependency Updates
o: EEE
=

Build Tests

Dependabot Pull Requests

“R@} New Release e
npm| @ — g Depfu E— O GitHub
Ma ven f‘ RENOVATE

Automated Dependency Updates

Bump okio from 2.2.2 10 2.4.1 #2593

)WY=l dependabot-previ... wants to merge 1 commitinto breaking from dependabot/gradle/breaking/com.squareup.o

;5v Conversation 0 -0- Commits 1 & Checks 1 Files changed 2
E dependabot-preview bot commented 2 hours ago Contributor +(@) A Dricks ***
Bumps okio from 2.2.2 to 2.4.1.

g3 compatibility ‘unknown

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a
rebase manually by commenting @dependabot rebase .

J
° All checks have passed Show all checks

1 successful check

° This branch has no conflicts with the base branch
Only those with write access to this repository can merge pull requests.

Avoi
d Regress:i_ons?

You review and merge

You check that your tests pass, scanthe
log and release notes, then

included change
hit merge with confidence-

Together with your build status, you can ea

risk of that update.

Test Suites + Third-Party Libraries

1.

Do we even write tests against
dependencies in the first place?

Do project test suites even
cover usages of dependencies 1in
the source code?

Are tests sufficient alone for
detecting bad updates?

Q: Should we write tests for dependencies/third-party libraries?

Empirical Study

What is the statement coverage of function
calls to dependencies?

How effective are test suites in detecting
updates with regression errors?

How does static analysis complement/compare
to test suites in updating dependencies?

Q/)
y

Java

Maven

V asm/asm

Statement Coverage: How?

Direct & Transitive Dependencies

d Direct Dependencies: Extract call sites of third-party
libs in bytecode

d Transitive Dependencies: Static Call Graph to infer
call paths to transitive call sites

A Instrumentation: Instrument functions belonging to
dependencies and record their execution

WALA

T. J. WATSON LIBRARIES FOR ANALYSIS

() wala/wALA

Statement Coverage

521 GH Projects having tests

100 +

60% ; §§ 200/0 median
median coverage >

of direct il coverage of
dependencies

40 R x transitive
30 A .

0. y N dependencies

10 A

Test coverage (%)

Direct Transitive
Function calls

Updates on untested codel

Does this matter at all?

National Cyber @

SeCUFITy Centre ABOUTNCSC CisP REPORT AN INCIDENT CONTACTUS

Home Information for... Advice & guidance Education & skills Products & services News, blogs, events...

s |
Alert: Apache Logdj vulnerabilities

The NCSC is advising organisations to take steps to mitigate the Apache Log4j
vulnerabilities.

9 Download / Print Article PDF
e Share

PUBLISHED
10 December 2021

WRITTEN FOR
Large organisations
Public sector

Cyber security professionals

NEWS TYPE

Alert

Test Effectiveness: How?

Mutation testing!

Arithmetic Mutation

def add(x,y): def add(x,y):
return x I y return x = vy

1T EEE)

We use PITest with a twist: We don’t mutate all
dependency functions; only those reachable by tests!

pitest.org

v1.0.2 v1.0.3

iB;EB
|_|“_I

1

bar (y) { baz() {

[%
+

y— || * qux(str)

y++

|_|_l

bar() » Arithmetic (df)
baz() » Method call (cf)

| Diffing |

Uppdatera

Change Impact Analysis as an alternative!

[stats_json(1l)

[validate_json() a]

m—

[sysperf_log()

json_size(y) e

[syslog_size() 9

[Call Graph Generation]

O jhejderup/Uppdatera

.I-i
ma1n(y

stats json(l)e

sysperf_log() 9

[syslog_size() gj

[Reachability Analysis]

67%
impacted
paths
clelelelelele)
++ baz ()

@eeeeee

I

How to deal with Semantic Changes?

Behavioural Changes: Data-flow and Control-flow changes!

e Any method-level move operation mirrors moving a
statement from line z to .

e deletion, update or insertion of FExpression ASTSs
mirrors data-flow changes.

e deletion, update or insertion of control struct ASTs
such as IF, While, FOR mirrors control-flow changes.

e deletion, update or insertion of Call-Expression
ASTs represents changes mirrors control-flow
changes.

13

Uppdatera

Change Impact Analysis as an alternative!

Bumps io.reactivex:rxjava from 1.3.4 to 1.3.8. This update introduces changes in 17 existing
functions: 1 of those functions are called by 1 function(s) in this project and has the risk of
creating potential regression errors.

Below are project functions that will be impacted after the update:

io.opentracing.rxjava.TracingSubscriber onError() ~ 1 reachable dep function(s)

v Sample Affected Path(s)

io.opentracing.rxjava.TracingSubscriber.onError
at: io.opentracing.rxjava.TracingActionSubscriber.onError
at: rx.plugins.RxJavaHooks$1l.call
at: rx.plugins.RxJavaPlugins.getErrorHandler
at: rx.plugins.RxJavaPlugins.getPluginImplementationViaProperty

v Changed Dependency Function(s)

Bl modified rx.plugins.RxJavaPlugins getPluginImplementationViaProperty()

= |nsert Try-Block in If-Statement (L300)
= Move ForEach-Loop in If-Statement (L287) to Try-Block (L301)

14

Detection Rate

1.0 4
0.9 A
0.8
0.7
0.6
0.5 1
0.4
0.3 A
0.2 1
0.1
0.0 A

Test Effectivies

1 Million artificial updates on 262 GH Projects

On average,

37 O/ O detected by tests!
72 O/ 0 detected by

Uppdatera!

Project Tests Uppdatera

No guarantees that tests can prevent bad updates!

Static Analysis Useful?

Manual Investigation on 22 Dependabot PRs

1 Discovered 3 unused dependencies

d Prevented 3 breaking updates (one
confirmed!)

d 6 cases as false positives (~31%).
Tests: 13%

1 Refactorings
[Over-approx call paths

Uppdatera can prevent updates but it is prone to false positives!

Recommendations

Tool Makers

A Confidence Score
A How reliable is my test suite for a particular library?
A Indication on where to direct test efforts

d Gaps in Test Coverage
1 Complement with Static Analysis
A (Catch early errors without running build/tests

Recommendations

Users of Automated Updating

Reuse is “free” but the operational/maintenance costs
are not “free”

Should not blindly trust automated dependency
updates—I guess no one does this :D

Write tests for critical dependencies

Nlant to knomw more?

https://doi.org/10.1016/j.jss.2021.111097 (Open Access)

The Journal of Systems & Software 183 (2022) 111097

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

-

ELSEVIER journal h www.elsevier.com/| i

Can we trust tests to automate dependency updates? A case study of)
Java Projects™ o

Joseph Hejderup *, Georgios Gousios
Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands

ARTICLE INFO ABSTRACT
Article history: Developers are increasingly using services such as Dependabot to dep y updates.
Received 16 February 2021 However, recent research has shown that developers perceive such services as unreliable, as they

Received in revised form 30 July 2021
Accepted 10 September 2021
Available online 24 September 2021

heavily rely on test coverage to detect conflicts in updates. To understand the prevalence of tests
exercising dependencies, we calculate the test coverage of direct and indirect uses of dependencies
in 521 well-tested Java projects. We find that tests only cover 58% of direct and 21% of transitive

Keywords: dependency calls. By creating 1,122,420 artificial updates with simple faults covering all dependency
Semantic versioning usages in 262 projects, we measure the effectiveness of test suites in detecting semantic faults in
Library updates dependencies; we find that tests can only detect 47% of direct and 35% of indirect artificial faults on
Package management average. To increase reliability, we investigate the use of change impact analysis as a means of reducing
Dependency management false negatives; on average, our tool can uncover 74% of injected faults in direct dependencies and 64%
Software migration

for transitive dependencies, nearly two times more than test suites. We then apply our tool in 22 real-
world dependency updates, where it identifies three semantically conflicting cases and three cases of
unused dependencies that tests were unable to detect. Our findings indicate that the combination of

static and dynamic analysis should be a requirement for future dependency updating systems.
©2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction library maintainers to release new changes based on their self-
interpretation of backward compatibility (npm, 2018; Bogart
Modern package managers facilitate reuse of open source soft- €t al., 2016). As a consequence, client programs may unexpectedly

ware libraries by enabling applications to declare them as ver- discover regression-inducing changes, such as bugs or semantic

https://doi.org/10.1016/j.jss.2021.111097

