Lilliput: Tiny Classpointers

A 10-minute speed run

Thomas Stife
Principal Engineer
tstuefe@redhat.com

Preface

63

Motivation

32 31

Class Pointer

Hash

Age

Q=

Class Pointers take a lot of space...

Preface

63

Class Pointer

..we need to make them smaller

Motivation

32 31

Hash

Age

Q=

What is a Class Pointer ?

Klass and Class Pointer

Class and Class Metadata

Java Heap Native Memory (Metaspace)

Header

Object

Class

var-sized...

Klass and Class Pointer

We already compress Class Pointers (since JDK 8)

Klass* is 64-bit - too much.

We split Klass* into 64-bit base and 32-bit offset. We only store the

offsetin the object headers.

64-bit Klass*

- =

64-bit Base 32-bit Offset

:

“Narrow” or “Compressed” Class pointer

“Encoding Base”
Runtime-constant, determined at VM start

‘ RedHat

Klass and Class Pointer

Class Space

32-bit offset?
= all Klass must be confined to a 4GB(*) range.

= class space : an enclosure for Klass structures

»

' Class Space

Klass Encoding Range
Base grangd

(*) Yes, am ignoring the encoding shift

»
P>

Base + 4G

Klass and Class Pointer

..and CDS

Same goes for CDS.

We place CDS archived metadata close to the class space.

+ CDS Class Space

»
P>

Base + 4G

Klass Encoding Range
Base grangd

Klass and Class Pointer

Decoding

Raw Klass Pointer = Encoding Base + Offset (narrow Klass Pointer) (*)

- C++:Baseis aruntime value

- JIT: Base is a constant (64-bit immediate)

Many optimizations exists per CPU that depend on a “good” Base.

(*) stillignoring encoding shift

10

Klass and Class Pointer

CPU-specific encoding bases

RiscV: bits set only in [12-32) (for lui) or [32-44) (addiw+slli)

Arm64: Either a logical immediate aligned to 4GB (eor) or bits in the
third quadrant only (movk)

S390: Prefer <4GB addresses (algfi) or bits restricted to a single
quadrant

x64: Prefer < 4GB for the short form of mov immediate

PPC: Restrict bits to as few quadrants as possible

Klass and Class Pointer

Optimization Example: unscaled encoding

If base is zero, we can omit the load immediate altogether.

JVM tries really hard to reserve class space in low address regions (even
harder in JDK 22+).

Class Space

»
L

Ox1_0000_0000

N — >

Klass Encoding Range
= Base grand

n

Lilliput: 22-bit

22-bit narrow Klass Pointers

Side Goals

Address “enough” classes

Contain invasiveness of patch:
- Lilliput will need to coexist with legacy JVM for some time
- = Keep Klass layout (for now)

- = Keep using CDS + Metaspace

14

22-bit narrow Klass Pointers

How many classes can we address today?

~5 million classes (*)

- 3GB class space

- Average Klass size ~6xx bytes

Using 3 GB class space would cost ~30 GB of Non-Class Metaspace!

(* without CDS)

22-bit narrow Klass Pointers

How many classes do we need to address?

Normal case: x*100 .. x*1000, very large applications: x*100_000.
But we need to cater to weird corner cases too (generator cases).

Anything in the multi-million range is fine.

= don’t reduce (for now) Klass encoding range size. Keep it at 4GB.

22-bit narrow Klass Pointers

Increase Alignment

We can increase Klass* alignment and re-purpose the alignment shadow
bits:

31 16 15 109 0

XXXXXXXX-XXXXXXXX-Xxxxxx00-00000000

17

22-bit narrow Klass Pointers

10-bit alignment

Why 10 bit (1KB) ?
On average:

>80% of Klass between 512 byte and 1K;

>95% of Klass smaller than 1K.

22-bit narrow Klass Pointers

22-bit Class Pointers

22 bits let us address 3 million classes (*)
= Klass needs 1KB on average

= Class space capped at 3 GB

(* without CDS)

22-bit narrow Klass Pointers

Class Space morphsinto a Table
Class Space | CDS

[— |

nKlass 1 2 3 4

=

T A O O T

19

22-bit narrow Klass Pointers

.. but fragmentation hurts
Class Space | CDS

:

nKlass 1 2 3 4

e

T R A O O O P P

20
& RedHat

21

22-bit narrow Klass Pointers

Make Metaspace alignment-aware

Class Space [Woss | Kess [K. [Kess |

... Before

a1 1 |1 BB

Class Space [oss [wess [< I wess T ;
Non-class Metaspace [IRNMEMNIN DRI BN | -:'-I-"
<_
FreeBlockTree

It works beautifully: (almost) zero footprint degradation.

22

22-bit narrow Klass Pointers

Number of Allocations (log)

1000000

100000

10000

1000

100

10

16

Statistics

Allocation Histogram for Klass- and Non-Klass Allocations
(17620 - mostly JDK - classes loaded)

32 64 128 256 512 1K 2K 4K 8K 16K

Allocation Size

Klass: Few (relatively), coarse-grained

Non-Klass: Numerous, fine-grained

32K

Class Space
Non-Class Metaspace

23

22-bit narrow Klass Pointers

Before:

Now (for now):

New Markword Layout (for now...)

63 3231
32-bit Class Pointer 25-bit Hash Age

63 42 41 3231
22-bit Class Pointer 31-bit Hash free | Age

24

22-bit narrow Klass Pointers

To Do Next

- Analyze cache effects of hyper-aligning
- Splitup Klass?
- Vary cadence by cache line size?
- 32-bit
- Not technically difficult, just messy and onerous

Lilliput: 16-bit ?

26

16-bit narrow Klass Pointers

16-bit Classpointers are possible

- First 65k classes: objects use 16-bit nKlass in mark word

- Later-class-objects: append nKlass (or, Klass*) to mark word

= Variable-sized header

63 48 47
Ox1.. OXFFFE Markword Object fields...
63 48 47
OXFFFF Markword Ox10000 .. x Object fields...

‘ RedHat

Summary

28

22-bit narrow Klass Pointers

Result

10 bits free

Restored ihash to 31-bit, 4 spare bits
nKlass Pointer = nKlass ID

Costs:

- Addressable classes ~5 — ~3 mio

- Slightly more complex decoding

29

22-bit narrow Klass Pointers

Result (2)

Side benefits for Stock JVM (JDK 22+)

- Improved class space setup, e.g. much higher chance for
unscaled or zero-based encoding, with ASLR

- Optimized klass decoding for RiscV and (to a lesser
extent) Arm64 and X64

T h a n k yo u ! B linkedin.com/company/red-hat

E youtube.com/user/RedHatVideos

m facebook.com/redhatinc

