dWs
~—

Lilliput
Compressed Object
Headers

Roman Kennke (@rkennke)

Principal Engineer
Amazon

Agenda
Overview/Motivation
Introduction

Locking

GC Forwarding

Compressed Class Pointers

aws

~ 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Overview/Motivation

aws
~—

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is Project Lilliput?

« An OpenlJDK project
(Contributions by: Red Hat, Oracle, SAP, Huawei, Alibaba, Amazon, ...)

« Goal: Reduce memory footprint

Side-effects: potential CPU and latency improvements

 Specifically: Reduce size of (Java) object headers

aws

~ 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Motivation

aws

~ 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Motivation

aws 6

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Motivation

aws 7

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Motivation - 12-bytes headers

- - ~20% of live data on heap is object

header
- YMMV (0% - 50%)

2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Motivation — 8-bytes headers

_ - ~13% of live data on heap is object

header
- YMMV (0% - 33%)
- Average savings of 7% (up to ~30%)

Motivation - 4-bytes headers

I - ~6.7% of live data on heap is object header
- YMMV (0% - 17%)
- Average savings of 14% (up to ~50%)

2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved 10

Motivation

Heap usage after GC

100

100% (100)

75

50

aws

~] © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Down by >30%

Zations 2025/

put Optimi

11

Motivation

CPU Utilization

',
SZUZS)

atig

-
-

=
-
-
*~—
o
|:_)
=
—_
o
-

Down by ~25%

aws 12

~] © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Motivation

Latency

f
)l

023/
Wk

7
—

wi
o
-
o
N
=
=
=
—_—
(::r
=
-

Down by ~30%

aws) 13

~] © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws

N

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Aleksey Shipilév

Reformatted JOL (git! | I) "heapdump-estimates"
report for better view on compressed refs, alignment, Lilliput
comparisons. Proves to be very useful during performance consults:
"Should we expect improvements if we switch?" -- "Feed a sample heap
dump here."

leap Dump: /Users/shipilev/Work/shipilev-jol/sample-clion.hprof.gz

‘Overhead' comes from additional metadata, representation and alignment losses.
'JWM mode' is the relative footprint change compared to the best JVM mode in this JDK.
'Upgrade From' is the relative footprint change against the same mode in other JDKs.

=== Overall Statistics

17426K, Total objects
556M, Total data size
31,92, Average data per object

Stock 32-bit OpendDK

Footprint, Overhead, Description
757M, +36, 2%, 32-bit (<4 GB heap)

Stock 64-bit OpenJDK (JDK < 15) |

Footprint, Overhead, Description

1273M, +128, 9%, @ 64-bit, no comp refs (>32 GB heap, default align)

819M, +47 , 4%, 64-bit, comp refs (<32 GB heap, default align)
+62, 2%, 64-bit, comp refs with large align (32..64GB heap, 16-byte align)
+74,7%, 64-bit, comp refs with large align (64..128GB heap, 32-byte align)
+162, 7%, 64-bit, comp refs with large align (128..256GB heap, 64-byte align)
+359, 0%, 64-bit, comp refs with large align (256..512GB heap, 128-byte align)
+757,2%, 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

=== Stock 64-bit OpenJDK (JDK >= 15)

Upgrade From:
Footprint, Overhead, JVM Mode, JDK < 15, Description

1198M, +115, 4%, +46,1%, =5,9%, 64-bit, no comp refs, but comp klasses (>32 GB heap, default align)
819M +47, 6%, (same), +0, 0%, 64-bit, comp refs (<32 GB heap, default align)

9o2M, +62, 2%, +10, 0%, +0, 0%, 64-bit, comp refs with large align (32..646GB heap, 16-byte align)
971M, +74,7%, +0, 0%, 64~bit, comp refs with large align (64..128GB heap, 32-byte align)
1461M, +162, 7%, +0, 0%, 64-bit, comp refs with large align (128..256GB heap, 64-byte align)
2553M, +359, 0%, (same), 64-bit, comp refs with large align (256..512GB heap, 128-byte align)
4768M, +757, 2%, (same), 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

Experimental 64-bit OpenJDK: Lilliput, 64-bit headers Gets a lot better across ma
modes with Lillilput (64)

Upgrade From:
Footprint, Overhead, JVM Mode, >= 15, Description

1133M, +103, 8%, +49, 6%, 64-bit, no comp refs, but comp klasses (>32 GB heap, default align)
757M, +36, 2%, (same), 64-bit, comp refs (<32 GB heap, default align)

856M, +52, 8%, +12,2%, 64-bit, comp refs with large align (32..64GB heap, 16-byte align)
957M, +72,1%, +26,3%, 64-bit, comp refs with large align (64..128GB heap, 32-byte align)
1458M, +162, 2%, +92, 4%, + 64-bit, comp refs with large align (128..256GB heap, 64-byte align)
2552M, +358, 9%, +236, 8%, 7 -0,0%, 64-bit, comp refs with large align (256..512GB heap, 128-byte align)
4767M, +757, 2%, +529, 2%, -0, 0%, 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

Experimental 64-bit OpenJdDK: Lilliput, headers Gets even better with Lilliput (32),
very experimental future
Upgrade From:
Footprint, Overhead, JVM Mode, JDK < 15, JDK >= 15, i Description

1058M, +55, 6%, -16, 8%, 64-bit, no comp refs, but comp klasses (>32 GB heap, default align)

680M, (same), -17,0%, 64~bit, comp refs (<32 GB heap, default align)

737M, -18, 3%, 64-bit, comp refs with large align (32..646B heap, 16-byte align)

935M, -3, 7%, % 64-bit, comp refs with large align (64..128GB heap, 32-byte align)
1456M, -0,4%, 64-bit, comp refs with large align (128..256GB heap, 64-byte align)
2551M, -0,1%, 64-bit, comp refs with large align (256..512GB heap, 128-byte align)
4767M, -0, 0%, 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

14

Motivation

» Reduce hardware (or cloud) cost
- Drive more load

- Reduce energy bills

« Save CO2

15

Introduction

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws
~—

What's in it?

Mark Word (normal):

64 39 8. 3 0
P HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH . AAAA . TT]
(Unused) (Hash Code) (GC Age) (Tag)

Class Word (compressed):

32 0 Insight:
[CCCCCCCCrrrrCCccceeccceceecccccceccecec « Most objects never get i-hashed
(Compressed Class Pointer) - Most objects never get locked
aws

17

What's in it?

Mark Word (overloaded):

64 2 0
[ppTT]
(Native Pointer) (Tag)

Class Word (compressed):
32 0
[CCCCCCCLCCceeceeceeceeccceccccecccl
(Compressed Class Pointer)

18

What's in it?

Mark Word (overloaded):

64 2 0
[pppppppppppppppppppppp|_3ppppp|_3pppppppppppppppppppppppppppppppTT]
(Native Pointer) (Tag)
-> Pointer into stack (for stack-locking) (tag = 00)
-> Pointer to ObjectMonitor (for monitor-locking) (tag = 10)

-> Pointer to forwarded object (for GC forwarding) (tag=11)

aws

~ 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

19

Displaced mark-word

Mark Word (overwritten):

64 2 0
[pplO]
(Native Pointer) (Tag)

L ObjectMonitor

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

20

The Plan

Header (compact):

64 32 7/ 3 0
[CCCCCCccececceccceccccccHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHUUUUAAAASTT]
(Compressed Class Pointer) (Hash Code) (GC Age)A(Tag)

(Self Forwarded Tag)

aws . 21

The Plan - Lilliput 2

Header (Lilliput 2):
32 9 7 3 0
[CCCCCCCCCCCCCCCCCCCCCCCHHAAAASTT]
(Class Pointer) A(Age)A(Tag)
(Hash-Code) (Self Forwarded Tag)

22

The Problems
- Old:

« Header rarely carries ‘interesting’ information (locked, i-hashed)

« Class-pointer is in separate field which never gets touched

« New:

Class-pointer is part of header

Must never loose that pointer

Header displacement and GC forwarding overwrite header

23

The Problems

- How to fit everything into fewer bits?

- How to safely access header when displaced?

- How to avoid clobbering the class-pointer?

24

Locking

aws
!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stack-Locking

« Simplest locking primitive

- Coordinate threads by CAS-ing on object mark-word
- No contention

- No support for wait()/notify()

- No support for JNI

- -> |nflate to full ObjectMonitor

26

Stack-locking

Mark Word (stack-locked):

64 2 0
LPPO0]
(Stack-Pointer) (Tag)

Stack

Is Thread T locking object O?
(Not: Which thread is locking O?)

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 27

Stack-locking

Mark Word (stack-locked):

64 2 0
LPPO0]
(Stack-Pointer) (Tag)

| Sstack |

Accessing dmw is dangerous!

(racy with unlocking)

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

28

New lightweight locking

Header (lw-locked):

64 32 7/ 30
[CCCCCCCCCCeCeeceecceceeccecccccc HHHHHHHHHHHHHHHHHHHHHHHHHAAAAS 00
(Compressed Class Pointer) (Hash Code) (GC Age)A(Tag)
(Self Forwarded Tag)
| JavaThread |

Is Thread T locking object O?
(Not: Which thread is locking O?)

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 29

Monitor locking

Mark Word (overwritten):

64 2 0
[pplO]
(Native Pointer) (Tag)

- Not a problem (yet) L ObjectMonitor

- Oracle engineers are working on a solution

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

30

GC Forwarding

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws
~—

GC Forwarding

Mark Word (forwarded):

64 2 0
[ppll]
(Forwarding Pointer) (Tag)

Forwarded object

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

32

GC Forwarding

GC Forwarding

Serial G1 Shenandoah Parallel ZGC
Normal Copying Fwd Copying Fwd Copying Fwd Copying Fwd Fwd Table
Full GC Scissor GC n/a

aws

~ 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

JEP 450

aws
!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

JEP 450: Compact Object Headers

New lightweight locking in JDK21 (-XX:LockingMode=2)
JEP 450: https://openjdk.org/jeps/450
-XX:+UseCompactObjectHeaders

35

https://openjdk.org/jeps/450

Wrapping up

-XX:+UseCompactObjectHeaders
https://openjdk.org/jeps/450

aws

N] © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

36

https://openjdk.org/jeps/450

Tiny Classpointers

aws
~—

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

