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What is Project Lilliput?

« An OpenlJDK project
(Contributions by: Red Hat, Oracle, SAP, Huawei, Alibaba, Amazon, ...)

« Goal: Reduce memory footprint

Side-effects: potential CPU and latency improvements

 Specifically: Reduce size of (Java) object headers
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Motivation - 12-bytes headers

- - ~20% of live data on heap is object

header
- YMMV (0% - 50%)
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Motivation — 8-bytes headers

_ - ~13% of live data on heap is object

header
- YMMV (0% - 33%)
- Average savings of 7% (up to ~30%)



Motivation - 4-bytes headers

I - ~6.7% of live data on heap is object header
- YMMV (0% - 17%)
- Average savings of 14% (up to ~50%)
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Motivation

Heap usage after GC
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Motivation

CPU Utilization
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Motivation

Latency
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Aleksey Shipilév

Reformatted JOL (git! | I) "heapdump-estimates"
report for better view on compressed refs, alignment, Lilliput
comparisons. Proves to be very useful during performance consults:
"Should we expect improvements if we switch?" -- "Feed a sample heap
dump here."

leap Dump: /Users/shipilev/Work/shipilev-jol/sample-clion.hprof.gz

‘Overhead' comes from additional metadata, representation and alignment losses.
'JWM mode' is the relative footprint change compared to the best JVM mode in this JDK.
'Upgrade From' is the relative footprint change against the same mode in other JDKs.

=== Overall Statistics

17426K, Total objects
556M, Total data size
31,92, Average data per object

Stock 32-bit OpendDK

Footprint, Overhead, Description
757M, +36, 2%, 32-bit (<4 GB heap)

Stock 64-bit OpenJDK (JDK < 15) |

Footprint, Overhead, Description

1273M, +128, 9%, @ 64-bit, no comp refs (>32 GB heap, default align)

819M, +47 , 4%, 64-bit, comp refs (<32 GB heap, default align)
+62, 2%, 64-bit, comp refs with large align ( 32..64GB heap, 16-byte align)
+74,7%, 64-bit, comp refs with large align ( 64..128GB heap, 32-byte align)
+162, 7%, 64-bit, comp refs with large align ( 128..256GB heap, 64-byte align)
+359, 0%, 64-bit, comp refs with large align ( 256..512GB heap, 128-byte align)
+757,2%, 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

=== Stock 64-bit OpenJDK (JDK >= 15)

Upgrade From:
Footprint, Overhead, JVM Mode, JDK < 15, Description

1198M, +115, 4%, +46,1%, =5,9%, 64-bit, no comp refs, but comp klasses (>32 GB heap, default align)
819M +47, 6%, (same), +0, 0%, 64-bit, comp refs (<32 GB heap, default align)

9o2M, +62, 2%, +10, 0%, +0, 0%, 64-bit, comp refs with large align ( 32..646GB heap, 16-byte align)
971M, +74,7%, +0, 0%, 64~bit, comp refs with large align ( 64..128GB heap, 32-byte align)
1461M, +162, 7%, +0, 0%, 64-bit, comp refs with large align ( 128..256GB heap, 64-byte align)
2553M, +359, 0%, (same), 64-bit, comp refs with large align ( 256..512GB heap, 128-byte align)
4768M, +757, 2%, (same), 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

Experimental 64-bit OpenJDK: Lilliput, 64-bit headers Gets a lot better across ma
modes with Lillilput (64)

Upgrade From:
Footprint, Overhead, JVM Mode, >= 15, Description

1133M, +103, 8%, +49, 6%, 64-bit, no comp refs, but comp klasses (>32 GB heap, default align)
757M, +36, 2%, (same), 64-bit, comp refs (<32 GB heap, default align)

856M, +52, 8%, +12,2%, 64-bit, comp refs with large align ( 32..64GB heap, 16-byte align)
957M, +72,1%, +26,3%, 64-bit, comp refs with large align ( 64..128GB heap, 32-byte align)
1458M, +162, 2%, +92, 4%, + 64-bit, comp refs with large align ( 128..256GB heap, 64-byte align)
2552M, +358, 9%, +236, 8%, 7 -0,0%, 64-bit, comp refs with large align ( 256..512GB heap, 128-byte align)
4767M, +757, 2%, +529, 2%, -0, 0%, 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)

Experimental 64-bit OpenJdDK: Lilliput, headers Gets even better with Lilliput (32),
very experimental future
Upgrade From:
Footprint, Overhead, JVM Mode, JDK < 15, JDK >= 15, i Description

1058M, +55, 6%, -16, 8%, 64-bit, no comp refs, but comp klasses (>32 GB heap, default align)

680M, (same), -17,0%, 64~bit, comp refs (<32 GB heap, default align)

737M, -18, 3%, 64-bit, comp refs with large align ( 32..646B heap, 16-byte align)

935M, -3, 7%, % 64-bit, comp refs with large align ( 64..128GB heap, 32-byte align)
1456M, -0,4%, 64-bit, comp refs with large align ( 128..256GB heap, 64-byte align)
2551M, -0,1%, 64-bit, comp refs with large align ( 256..512GB heap, 128-byte align)
4767M, -0, 0%, 64-bit, comp refs with large align (512..1024GB heap, 256-byte align)
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Motivation

» Reduce hardware (or cloud) cost
- Drive more load

- Reduce energy bills

« Save CO2
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What's in it?

Mark Word (normal):

64 39 8. 3 0
P HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH . AAAA . TT]
(Unused) (Hash Code) (GC Age) (Tag)

Class Word (compressed):

32 0 Insight:
[ CCCCCCCCrrrrCCccceeccceceecccccceccecec « Most objects never get i-hashed
(Compressed Class Pointer) - Most objects never get locked
aws
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What's in it?

Mark Word (overloaded):

64 2 0
[ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppTT]
(Native Pointer) (Tag)

Class Word (compressed):
32 0
[ CCCCCCCLCCceeceeceeceeccceccccecccl
(Compressed Class Pointer)
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What's in it?

Mark Word (overloaded):

64 2 0
[pppppppppppppppppppppp|_3ppppp|_3pppppppppppppppppppppppppppppppTT]
(Native Pointer) (Tag)
-> Pointer into stack (for stack-locking) (tag = 00)
-> Pointer to ObjectMonitor (for monitor-locking) (tag = 10)

-> Pointer to forwarded object (for GC forwarding) (tag=11)
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Displaced mark-word

Mark Word (overwritten):

64 2 0
[pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppplO]
(Native Pointer) (Tag)

L ObjectMonitor
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The Plan

Header (compact):

64 32 7/ 3 0
[CCCCCCccececceccceccccccHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHUUUUAAAASTT ]
(Compressed Class Pointer) (Hash Code) (GC Age)A(Tag)

(Self Forwarded Tag)
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The Plan - Lilliput 2

Header (Lilliput 2):
32 9 7 3 0
[ CCCCCCCCCCCCCCCCCCCCCCCHHAAAASTT]
(Class Pointer) A(Age)A(Tag)
(Hash-Code) (Self Forwarded Tag)
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The Problems
- Old:

« Header rarely carries ‘interesting’ information (locked, i-hashed)

« Class-pointer is in separate field which never gets touched

« New:

Class-pointer is part of header

Must never loose that pointer

Header displacement and GC forwarding overwrite header
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The Problems

- How to fit everything into fewer bits?

- How to safely access header when displaced?

- How to avoid clobbering the class-pointer?
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Locking
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Stack-Locking

« Simplest locking primitive

- Coordinate threads by CAS-ing on object mark-word
- No contention

- No support for wait()/notify()

- No support for JNI

- -> |nflate to full ObjectMonitor
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Stack-locking

Mark Word (stack-locked):

64 2 0
LPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPO0]
(Stack-Pointer) (Tag)

Stack

Is Thread T locking object O?
(Not: Which thread is locking O?)

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 27



Stack-locking

Mark Word (stack-locked):

64 2 0
LPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPO0]
(Stack-Pointer) (Tag)

| Sstack |

Accessing dmw is dangerous!

(racy with unlocking)
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New lightweight locking

Header (lw-locked):

64 32 7/ 30
[ CCCCCCCCCCeCeeceecceceeccecccccc HHHHHHHHHHHHHHHHHHHHHHHHHAAAAS 00
(Compressed Class Pointer) (Hash Code) (GC Age)A(Tag)
(Self Forwarded Tag)
| JavaThread |

Is Thread T locking object O?
(Not: Which thread is locking O?)
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Monitor locking

Mark Word (overwritten):

64 2 0
[pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppplO]
(Native Pointer) (Tag)

- Not a problem (yet) L ObjectMonitor

- Oracle engineers are working on a solution

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

30



GC Forwarding
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GC Forwarding

Mark Word (forwarded):

64 2 0
[ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppll]
(Forwarding Pointer) (Tag)

Forwarded object
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GC Forwarding

GC Forwarding

Serial G1 Shenandoah Parallel ZGC
Normal Copying Fwd Copying Fwd Copying Fwd Copying Fwd Fwd Table
Full GC Scissor GC n/a
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JEP 450
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JEP 450: Compact Object Headers

New lightweight locking in JDK21 (-XX:LockingMode=2)
JEP 450: https://openjdk.org/jeps/450
-XX:+UseCompactObjectHeaders
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https://openjdk.org/jeps/450

Wrapping up

-XX:+UseCompactObjectHeaders
https://openjdk.org/jeps/450
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https://openjdk.org/jeps/450

Tiny Classpointers
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