
The case for a virtual 
Rust stateless codec 
driver 
Daniel Almeida



2

Video codecs explained (quickly)
● Raw video is *huge*

● Video signals contain exploitable redundancies

● Video codecs compress and decompress video by 
capitalizing on this



3

Video codecs explained (quickly)
● Usually this process is lossy

● The objective is to arrive at a passable 
approximation

● At a given bitrate and power envelope



4

But..we want things to be fast 
and cool...



5

Hardware accelerators
● Tend to be faster, more power efficient

● Frees up the main CPU

● Less flexible (usually only a few profiles supported)

● Need driver support and an API to communicate with 
userland



6

To understand codec drivers, 
we must look inside the 
bitstream



7

Inside a codec 
bitstream



8

Inside the bitstream
● Metadata

– Controls the decoding process

– May persist between frames or relate to a single frame

– e.g.: VPS/SPS/PPS, etc.

● Slice and/or tile data
– Actual compressed data



9

And how can we talk to these 
devices?



10

V4L2 Codec API types
● Stateful

– Hardware parses bitstream itself

– Hardware keeps track of bitstream metadata

● Stateless
– Userland parses stream

– Userland sends metadata to driver

– Driver uses metadata to program the device



11

We have a virtual stateless 
driver :)



12

visl (Virtual Stateless Decoder Driver)
● A virtual stateless driver

● Pretends it’s decoding data

● Instead gives the programmer a lot of debug 
information



13

What is visl good for?
● Developing new userland (based on a working one)

● Fixing bugs on existing userland implementations

● Testing userland when hardware is not available

● Prototyping new codec APIs



14

Great! What’s the problem 
then?



15

What the 
metadata looks 

like



16

There are pages and more 
pages of this...



17

Not only this can be *very* 
complex but...



18

...we index into arrays and use 
loop variables from data read 
directly from the bitstream



19

The case for Rust
● We are handling a *lot* of metadata per frame

● This metadata is highly structured/complex

● The meaning of fields may change based on the 
value of other fields

● You may have to juggle multiple versions of a given 
set of metadata (e.g.: only one is active)



20

This problem is exacerbated 
in real drivers :/



21

The case for Rust
● You have to carefully read the specs to make the 

right use of said metadata

● Otherwise you may wrongly program the device

● This may hang the device or worse:

● This can change the decoding process in unknown 
ways



22

The case for Rust
● Clearly there’s value to having Rust in codec drivers

● A virtual driver is the perfect candidate to experiment

● We can make it even simpler (no debug information)

● If we can make a virtual driver work with Rust, we will 
have the foundations for real drivers



23

What do we have so far?



24

What we have so far
● Abstractions for some V4L2 data types

● A *very* thin videobuf2 abstraction (you can spawn a 
queue)

● Abstractions for some V4L2 ioctls

● The necessary code to get the driver to probe

● A sample module that merely prints to the terminal



25

What do we need?



26

Rust abstractions we need
● V4L2 controls (to get the metadata)

● Media controller (for V4L2 Request support)

● mem2mem (for device_run() and friends)

● More ioctl support



27

We still need a green light 
from maintainers



28

Feedback and roadblocks
● V4L2 can’t keep up with the workload as is

● Not enough reviewers and maintainers

● Long-standing issues with some C frameworks

● Fear of breaking C code

● Who is going to maintain the Rust layer?



29

We want to unblock this effort



30

Which is why we are 
proposing a virtual driver in 
Rust



31

Summary
● Stateless codec drivers take in a lot of untrusted 

data from userland

● We can minimize the attack surface with Rust

● The visl virtual driver is a prime candidate for 
experimentation



Thank you!
We are hiring - col.la/careers

32

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

