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Video codecs explained (quickly)
● Raw video is *huge*

● Video signals contain exploitable redundancies

● Video codecs compress and decompress video by 
capitalizing on this
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Video codecs explained (quickly)
● Usually this process is lossy

● The objective is to arrive at a passable 
approximation

● At a given bitrate and power envelope
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But..we want things to be fast 
and cool...
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Hardware accelerators
● Tend to be faster, more power efficient

● Frees up the main CPU

● Less flexible (usually only a few profiles supported)

● Need driver support and an API to communicate with 
userland
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To understand codec drivers, 
we must look inside the 
bitstream
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Inside a codec 
bitstream
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Inside the bitstream
● Metadata

– Controls the decoding process

– May persist between frames or relate to a single frame

– e.g.: VPS/SPS/PPS, etc.

● Slice and/or tile data
– Actual compressed data
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And how can we talk to these 
devices?
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V4L2 Codec API types
● Stateful

– Hardware parses bitstream itself

– Hardware keeps track of bitstream metadata

● Stateless
– Userland parses stream

– Userland sends metadata to driver

– Driver uses metadata to program the device
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We have a virtual stateless 
driver :)
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visl (Virtual Stateless Decoder Driver)
● A virtual stateless driver

● Pretends it’s decoding data

● Instead gives the programmer a lot of debug 
information
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What is visl good for?
● Developing new userland (based on a working one)

● Fixing bugs on existing userland implementations

● Testing userland when hardware is not available

● Prototyping new codec APIs
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Great! What’s the problem 
then?
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What the 
metadata looks 

like
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There are pages and more 
pages of this...
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Not only this can be *very* 
complex but...
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...we index into arrays and use 
loop variables from data read 
directly from the bitstream
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The case for Rust
● We are handling a *lot* of metadata per frame

● This metadata is highly structured/complex

● The meaning of fields may change based on the 
value of other fields

● You may have to juggle multiple versions of a given 
set of metadata (e.g.: only one is active)
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This problem is exacerbated 
in real drivers :/
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The case for Rust
● You have to carefully read the specs to make the 

right use of said metadata

● Otherwise you may wrongly program the device

● This may hang the device or worse:

● This can change the decoding process in unknown 
ways
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The case for Rust
● Clearly there’s value to having Rust in codec drivers

● A virtual driver is the perfect candidate to experiment

● We can make it even simpler (no debug information)

● If we can make a virtual driver work with Rust, we will 
have the foundations for real drivers
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What do we have so far?
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What we have so far
● Abstractions for some V4L2 data types

● A *very* thin videobuf2 abstraction (you can spawn a 
queue)

● Abstractions for some V4L2 ioctls

● The necessary code to get the driver to probe

● A sample module that merely prints to the terminal
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What do we need?
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Rust abstractions we need
● V4L2 controls (to get the metadata)

● Media controller (for V4L2 Request support)

● mem2mem (for device_run() and friends)

● More ioctl support
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We still need a green light 
from maintainers
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Feedback and roadblocks
● V4L2 can’t keep up with the workload as is

● Not enough reviewers and maintainers

● Long-standing issues with some C frameworks

● Fear of breaking C code

● Who is going to maintain the Rust layer?
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We want to unblock this effort
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Which is why we are 
proposing a virtual driver in 
Rust
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Summary
● Stateless codec drivers take in a lot of untrusted 

data from userland

● We can minimize the attack surface with Rust

● The visl virtual driver is a prime candidate for 
experimentation



Thank you!
We are hiring - col.la/careers
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http://col.la/careers
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