GDB on Windows
status & plans

Pedro Alves

Agenda

* Windows debug API particularities
* Non-stop mode, and how we're planning on implementing it on Windows
 Ctrl-C handling and what is different on Windows

* The GDB testsuite, why nobody is running it on native Windows, and what
can we do about it.

* PDB (Portable Database), Microsoft's debug info format

* More

B

);

B

);

Windows debug API core

OOL WaitForDebugEvent(
[out] DEBUG_EVENT *IpDebugEvent,
[in] DWORD dwMiilliseconds

OOL ContinueDebugEvent(

[in] DIWORD dwProcesslid,

[in] DIWORD dwThreadld,

[in] DWORD dwContinueStatus

DWORD SuspendThread(
[in] HANDLE hThread

);

DWORD ResumeThread(
[in] HANDLE hThread

);

Windows debug API, WaitForDebugEvent

BOOL WaitForDebugEvent(
[out] DEBUG_EVENT *IpDebugEvent,
[in] DWORD dwMiilliseconds // 0 - return immediately; INFINITE - wait forever

);
* Note: not asynchronous.

* To avoidblocking must either:
o periodicallypoll, or,
o call from separatethread. <<< what GDB does.

* Must be called from the thread that attached or spawned the inferior.
o Must make most debug API calls from that separate thread. << what GDB does.

Windows debug API, ContinueDebugEvent

BOOL ContinueDebugEvent(
[in] DWORD dwProcessld,
[in] DWORD dwThreadld,
[in] DIWORD dwContinueStatus

);
Where dwContinueStatuscan be:

« DBG_CONTINUE

o If the thread previously reported EXCEPTION _DEBUG_EVENT, stop all exception processing, the exception is
marked as handled.

- DBG_EXCEPTION_NOT_HANDLED

o If the thread previously reported EXCEPTION DEBUG_EVENT, continue exception processing. If thisis a first-
chance exception event, the search and dispatch logic of the structured exception handleris used; otherwise, the
process is terminated.

Async mode

o GDB's event loop reacts to multiple event sources at the same time
o target events + user input
o Background execution commands:

(gdb) c&
Continuing.
(gdb)

o Most importantly

= => |et GUIs/IDEs communicate with GDB while inferior is running
(read memory, set breakpoints, symbol queries, etc., etc.)

=

()

All-stop mode

TL T2 T3 T4 T5
. [R] [R] [R] [R] [R] <<< all threads running free, T3 about to hit exception

(k] [k] [E] [k] [k] <<< T3 hit exception, kernel pauses whole process
<<< user inspects T3, backtrace, prints variables, etc.

(k] [k] [E] [k] [k] <<< user resumes, GDB issues ContinueDebugEvent (T3, DBG CONTINUE or

DBG EXCEPTION NOT HANDLED)

. - - - - - <<< all threads running free again

I - runnable (suspend count == 0) E - exception event, suspended by kernel

k - suspended by kernel E - suspended by GDB (suspend count == 1)

All-stop mode + "set scheduler-locking on"

[R] [R] [R] [R] I[R] <<< all threads running free, T3 about to hit exception

[k] [k] [E] [k] [k] <<< T3 hit exception, kernel pauses whole process

<<< user inspects T3, backtrace, prints variables, etc.

[k] <<< user decides to resume only thread Tl, suppress exception,
GDB uses SuspendThread to freeze threads T2-T5, and is

about to issue ContinueDebugEvent (T3, DBG CONTINUE)

[R] <<< Tl running free again, others suspended

R - runnable (suspend count == 0) E - exception event, suspended by kernel

k - suspended by kernel E - suspended by GDB (suspend count == 1)

Non-stop mode

o only the thread that hits breakpoint/event reports stop to user
o other threads keep running

o only supported on GNU/Linux, and remote targets (some embedded systems)

Thread 6 "pthreads" hit Breakpoint 3, thread2 (arg=0Oxdeadbeef)
at gdb.threads/pthreads.c:90

90 k +=i;
(gdb) info threads
Id Target Id Frame
*1 Thread 4980.0x17b8 "pthreads" (running)
2 Thread 4980.0x664 (running)
3 Thread 4980.0xa50 (running)
4 Thread 4980.0x154 "sig" (running)
5 Thread 4980.0x91c "pthreads" (running)
6 Thread 4980.0xad8 "pthreads" thread2 (arg=Oxdeadbeef)

at gdb.threads/pthreads.c:90
(gdb)

Non-stop mode plans

Non-stop mode problem on Windows:

WaitForDebugEventreturns an event => kernel suspends the whole process (all its threads)
Conflict: non-stop wants to leave all other threads running!
Easy, immediately SuspendThread the event thread (not others), and call ContinueForDebugEvent, right?
... not so fast!

The user hasn't decided yet whether to pass the exception to the inferior or not!

Non-stop mode plans, Win10 to the rescue

BOOL ContinueDebugEvent(
[in] DWORD dwProcessld,
[in] DWORD dwThreadld,
[in] DIWORD dwContinueStatus

);
Where dwContinueStatus can now also be:

- DBG_REPLY_LATER

o "Supportedin Windows 10, version 1507 or above, this flag causes dwThreadId to replay the existing breaking
event after the target continues. By callingthe SuspendThread APl against dwThreadld, a debugger can resume
other threads in the process and later return to the breaking."

https://learn.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-suspendthread

Non-stop, sequence of events

TlT T2 T3 T4 T5

2. [k] [k] [E] [k] [k]
3. [k] [k] [k] [k]
4

. [RI R] @ R] [R]

=

T

I

M

Bl 5.
6. [R] [R] [R] [R] [R]
7. [kl [k] [E] [k] [k]

N s [R

<L

<L

<KL

<KL

<KL

<KL

<KL

<L

all threads running free, T3 about to raise exception

T3 raises exception, kernel pauses
GDB suspends T3 (SuspendThread =>
GDB issues ContinueDebugEvent (T3,

remembers event will be repeated

whole process
suspend count == 1)

DBG REPLY LATER),

user inspects T3, backtrace, prints variables, etc.

user resumes T3, GDB unsuspends T3

(ResumeThread => suspend count ==

T3 immediately re-reports exception, kernel pauses whole process

GDB issues ContinueDebugEvent (T3,

DBG EXCEPTION NOT HANDLED)

DBG CONTINUE or

I - runnable (suspend count == 0) E - exception event, suspended by kernel

k - suspended by kernel E - suspended by

GDB (suspend count == 1)

)

=

c 3 o

o ¥ w0

Non-stop, multiple events works too

TlT T2 T3 T4 T5

[k] [k] [E] [k] [k]
[k] [k] [k] [k]

. [RI R] @ R] [R]

[E] [k] (k] [k]

. B (k1 [k] [k]
. B rR1 B R [R]

. [l [R] [R] [R] [R]

Bl (k] [E] [k] [k]

.\ 1 R R (R

<L

<L

<KL

<KL

<KL

<L

<KL

<KL

<KL

<L

all threads running free, T3 about to raise exception

T3 raises exception, kernel pauses
GDB suspends T3 (SuspendThread =>
GDB issues ContinueDebugEvent (T3,

remembers event will be repeated

Tl raises exception, kernel pauses
GDB suspends Tl (SuspendThread =>
GDB issues ContinueDebugEvent (T1,

remembers event will be repeated

user resumes T3, GDB unsuspends T3

whole process
suspend count == 1)

DBG REPLY LATER),

whole process
suspend count == 1)

DBG REPLY LATER),

(ResumeThread => suspend count == 0)

T3 immediately re-reports exception, kernel pauses whole process

GDB issues ContinueDebugEvent (T3,

DBG_EXCEPTION NOT HANDLED)

DBG CONTINUE or

Non-stop mode plans, there's more to it

There's more to it, but no time to go through it all today.

* Cygwin signal handlingdetails
* Watchpointssupport details
» SuspendThread accounting messy details

» Passing signal to right thread details

S_siginfo per thread

Also, we have a few downstream Cygwin GDB patches, some of which we need to upstream:

* Unwind cygwin _sigbe and sigdelayed frames

* Drop special way of getting inferior context after a Cygwin signal
* Use cygwin pgid if inferior is a cygwin process

« Others...

GDB on Windows, two ports

Cygwin
Cygwin is: "a DLL (cygwinl.dll) which provides substantial POSIX API functionality.”

You rebuild your application from source.
Application aware of UNIX® functionality like signals, ptys, etc.

C runtime / headers based on newlib.

MinGW (1
Port of GCC compiler to Windows systems, and other tools (binutils, .def and .idl files, etc.)

Windows APl Headers, Cruntime headers, everything needed for linking and running code on Windows

C runtime / headers based on MSVCRT.

The Cygwin GDB port uses posix signals, ptys, select/poll event loop, etc.

The MinGW GDB port uses WaitForMultipleObject event loop, etc.

Both ports share the backend code that talks to the Windows debug API (gdb/windows-nat.c)

[1] - there are two MinGW projects, but we can ignore that fact here

GDB testsuite

Built on DejaGnu => Built on expect => Builton TCL

DejaGnu assumes Unix-like environment:

o Posixshell and utilities, "kill", "cp", "mv", etc.
o Thereis no Windows native expect port

Testing a Cygwin GDB on a Cygwin environmentworks
o Slow & not super stable, but works
o But, not the same as native MinGW GDB

MinGW GDB under Cygwin/Msys2

o Windows GDB running under Cygwin expect sees input/output connected to a pipe, not an interactive pty
=> GDB disables interactive/readline mode

o Terminal mode handling => CodeSourcery's cygwin-wrapper tool could help here?

o Path mapping issues (what GDB sees != what testcases see)

GDB's multi-threadingtests use pthreads
o Native Windows doesn't have that => MinGW-w64 has them w/ winpthreads, though

ldeas?

o Run DejaGnuon Cygwin/ Msys2, spawn MinGW GDB? =>need GDB hackery?
o Run DejaGnuon GNU/Linux, spawn MinGW GDB on remote host? => where GNU/Linux could be WSL

o Other?

GDB testsuite

BTW, compiling GDB on Cygwin is... slo000000000000000000000W

Solution— cross compile from GNU/Linux
o On Fedora, just install the cygwin cross compiler packages found in yselkowitz's Fedora copr:
» https://copr.fedorainfracloud.org/coprs/yselkowitz/cygwin/

o Elsewhere, you can use my cygwin-cross wrapper — a docker containerthat pullsin yselkowitz's packages:
e https://github.com/palves/cygwin-cross

Cross compile from GNU/Linux

SMB-mount GNU/Linux build dir on Windows

Run testsuite in Cygwin, inside Windows

Configure just the testsuite (not the whole of gdb), and then run make check:
$ /path/to/src/gdb/testsuite/configure
$ make check-parallel —-3j8 RUNTESTFLAGS="\

GDB=/cygdrive/x/gdb/build-cygwin-cross/gdb/gdb \
GDB_DATA DIRECTORY=/cygdrive/x/gdb/build-cygwin-cross/gdb/data-directory"

https://copr.fedorainfracloud.org/coprs/yselkowitz/cygwin/
https://github.com/palves/cygwin-cross

GDB testsuite

Testsuite on Cygwin, a struggle

Slooooooooow
Flaky

Infinite hangs
o Needs hand holding — kill gdb processes to unblock rest of run
o Mitigated by skipping tests we know can't work, like fork tests
o Remaining hangs odd => GDB hangs forever on exit, after DejaGnu closed stdio

Lots of tests fail because regexps assume single-threaded

o Butall Cygwin programs are multi-threaded => adjust tests, busy work

PDB (Program Database)

Microsoft's native debug info format
It's not DWARF
Proprietary, undocumented for many years

Windows native dlls to read it
o DIA SDK, dbghlp.dl

MSFT provided a code dump of a reader on github a few years back
LLVM since developed library to read PDB

Other libraries appeared

GCC patches to make GCC emit PDB

No GDB patches

More IWBN features

 Microsoft C++ ABI

* Structure layout

 Name mangling (decoration) Scheme
Most ABIs use the Itanium C++ ABI, and its mangling scheme

$ echo ZNStévectorIPKcSaISl EESpush backEOS1 | c++filt
std::vector<char const*, std::allocator<char const*> >::push back(char const*&&)

Microsoft has its own scheme

 Calling convention(s)

« Calling functions in inferior
e finish/return commands

« Exception handling
 catch catch
 catch throw
* |ntercept exceptions when stepping

The End

Non-stop mode plans

 GDB 13 made it possible to handle inputand inferior events at the same time by moving this:

BOOL WaitForDebugEvent(
[out] LPDEBUG_EVENT |IpDebugEvent,
[in] DWORD dwMiilliseconds

);

... to a separate thread.

Windows debug API particularities

To detach from an inferior:

BOOL DebugActiveProcessStop(
[in] DWORD dwProcessld

);
Must be called from the thread that started debugging the process..

..but if that thread is blocked waiting for events with "WaitForDebugEvent(INFINITE)"?

=> Can't detach!

Windows debug API particularities

Solution: force inferior process to report an event

// raise breakpoint trap

BOOL DebugBreakProcess(
[in] HANDLE Process

);

// raise ctrl-c
BOOL WINAPI GenerateConsoleCtrlEvent(
In DWORD dwCtrlEvent,

In DWORD dwProcessGroupld
);

Awkward as forces the inferior to spawn a new thread.

Windows debug API particularities

Awkward as they force the inferior to spawn a new thread.
Would prefer if debug events were reported via standard WaitForMultipleObjectsinstead of WaitForDebugEvent.
Could then wait for both, simultaneously:

« debugevents

* a Windows event (SetEvent) <<< used to unblock the thread

But that's not how it works...

=

(O))

(00)

Non-stop mode plans, Win10 to the rescue

TL T2 T3 T4 T5

. [R] [R] [R] [R] <<< all threads running free except T5, T3 about to raise exception
(k] [k] [E] [k] §sN <<< T3 raises exception, kernel pauses whole process
(k] [k] maﬂ [k] man <<< GDB suspends T3 (SuspendThread => suspend count == 1)

. [R] [R] [R] <<< GDB issues ContinueDebugEvent (T3, DBG REPLY LATER),

remembers event will be repeated
<<< user inspects T3, backtrace, prints variables, etc.

. - - - - <<< user resumes T3, GDB unsuspends T3 (ResumeThread => suspend count == 0)

-J

(k] [k] [E] [k] JEsE <<< T3 immediately re-reports exception, kernel pauses whole process
. [R] [R] [R] [R] <<< GDB issues ContinueDebugEvent (T3, DBG CONTINUE or
DBG EXCEPTION NOT HANDLED)

I - runnable (suspend count == 0) E - exception event, suspended by kernel

k - suspended by kernel E - suspended by GDB (suspend count == 1)

A N

Non-stop mode plans, Win10 to the rescue

WaitForDebugEventreports event for thread T // kernel suspends all the threads
SuspendThreadthread T // we want T to be remain suspended after ContinueDebugEvent
ContinueDebugEvent DBG_REPLY_LATER // sets all other threads running free again
Record that we're expecting a repeated DBG_REPLY_LATER kernel event

Report event for T to GDB core

Later:

1.

v ok W N

User resumes thread T again, decides to pass or not exception down
We record in T's data structure whether to pass exception down or not
ResumeThread thread T

Due to earlier DBG_REPLY_LATER, kernel reports same event for T again

GDB knows it is expecting the repeated event for T, and calls ContinueDebugEventimmediately:
o with either DBG_CONTINUE or DBG_EXCEPTION_NOT_HANDLED appropriately

	Default Section
	Slide 1: GDB on Windows status & plans
	Slide 2: Agenda
	Slide 3: Windows debug API core
	Slide 4: Windows debug API, WaitForDebugEvent
	Slide 5: Windows debug API, ContinueDebugEvent
	Slide 6: Async mode
	Slide 7: All-stop mode
	Slide 8: All-stop mode + "set scheduler-locking on"
	Slide 9: Non-stop mode
	Slide 10: Non-stop mode plans
	Slide 11: Non-stop mode plans, Win10 to the rescue
	Slide 12: Non-stop, sequence of events
	Slide 13: Non-stop, multiple events works too
	Slide 14: Non-stop mode plans, there's more to it
	Slide 15: GDB on Windows, two ports
	Slide 16: GDB testsuite
	Slide 17: GDB testsuite
	Slide 18: GDB testsuite
	Slide 19: PDB (Program Database)
	Slide 20: More IWBN features
	Slide 21: The End
	Slide 22: Non-stop mode plans
	Slide 23: Windows debug API particularities
	Slide 24: Windows debug API particularities
	Slide 25: Windows debug API particularities
	Slide 26: Non-stop mode plans, Win10 to the rescue
	Slide 27: Non-stop mode plans, Win10 to the rescue

