
Deploying Python on Wasm

Smaller, Safer, Faster, Universal

Dan Phillips
@d_philla

@d_philla

About me:

- Engineer @ Loophole Labs
- Scale Function Runtime (scale.sh)
- @d_philla
- Wasm Chicago Group (wasmchicago.org)

@d_philla

What is WebAssembly?
- WebAssembly (abbreviated Wasm) is a safe, portable,

low-level code format designed for efficient execution and
compact representation

- Safe, sandboxed execution env, “deny-by-default”, makes
no assumption about languages, or host.

- Analogy: “Virtual CPU”

@d_philla

Cont’d:
- A Compilation Target
- A Virtual Instruction Set Architecture (ISA)

-Bytecode binary format
- Stack Machine

@d_philla

Wait, what?
- In a broad sense, Wasm is just another architecture

- Key diffs:
- Virtualized
- Needs a runtime to translate to Machine code
- Universal

@d_philla

A client-side technology?
- Safe, sandboxed execution environment… makes no

assumption about languages, or host.
- “Cold start” times in nano- to micro-seconds
- Universal compilation target

- Wasm != Web && Wasm != Assembly

@d_philla

Server-side WebAssembly
-Cloud Infrastructure’s “Penicillin Moment”
-VMs -> Containers -> WebAssembly

-smaller, safer, *faster, (much more) universal.
-Founder of Docker on Wasm

https://twitter.com/solomonstre/status/1111004913222324225

@d_philla

WASI - System Interface
-Started in 2019, initially POSIX Interface for Wasm
-Capability-based security
-evolving standard: Preview 1, 2, 3 (Future)
-is it required ?

https://wasi.dev/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/

https://scale.sh

- Plugin framework
- Serverless function runtime
- Polyglot programming in the

same runtime environment
- written in golang
- Current plugin support for rust,

go, typescript

@d_philla

Building Python: Assumptions
- Assumptions:

- Unix
- Filesystem
- Dynamic Linking
- Syscalls/Libc

https://github.com/python/cpython/blob/main/Tools/wasm/README.md

@d_philla

Pain-points
- Limited number of supported Syscalls
- No pthread APIs
- No socket APIs
- Non-comprehensive signal support

- More Detail: Christian Heimes’ Wasm Day Talk

https://www.youtube.com/watch?v=B52cSnNOrFM

@d_philla

📦📦 boxer 📦📦
Container Declaration→ Wasm Binary (+ runtime)

boxer.dev

@d_philla

What is in a (Wasm) Box?

● Base layer
● VFS + Virtualized

Sys Code Stubs
● Compiled runtime
● User source code
● Exports/Imports

@d_philla

How?
- libc/syscall Interfaces (wasm-libc, wasi-libc)
- a sandboxed FS (wasm-vfs)
- wizer

 →
 →
 →
 →
 →

@d_philla

wasm-vfs
https://github.com/dphilla/wasm-vfs

- Implemented Syscalls
- POSIX semantics
- Key differences with sync/flush/lock and more
- Architecture Patterns
- (code)

https://github.com/dphilla/wasm-vfs

@d_philla

Demo

@d_philla

🚨 (Big) Caveats 🚨
- Threads

- Networking

- Native Dependencies, the problem, and what to do
- What the benefits Wasm-ifying these does, though

- Future work, current solutions

@d_philla

@d_philla

Containers
Size: 80 - 900mb
Startup Speed: 800ms - ~2s
Security Model: Shared Kernel

Key Python Deployment Metrics
Boxes
Size: 16 mb
Startup Speed ~100μs - ~1 ms:
Security Model: Virtualized
Sandboxed, Machine code
execution

@d_philla

- Full support for Libc + Syscall Interfaces: Import/Exports, runtime host function
generation

- Modularize Kernel Stacks 😱
- Pluggable, Networking stack, etc.
- Wasm VFS
- Shims, when needed, modules elsewhere

- A Paradigm-shift: A kernel-free, composable, universal Wasm-based Operating
Environment
- WASI
- WALI
- Baremetal Runtimes + Unikernel, etc.

- Unprecedented, True Isomorphism

The Future

@d_philla

Thanks!

loopholelabs.io
loopholelabs.io/discord

web:
discord:

@LoopholeLabstwitter:

web:
linkedin:

twitter:
blue sky:

Dan Phillips

loopholelabs.io
linkedin.com/in/d-philla/

d_philla

Engineer / Wasm Lead

