Deploying Python on Wasm

<IN
L

- O !

Smaller, Sater, Faster, Universal *

™

Dan Phillips
@d_philla

«

Loophole Labs



About me:

- Engineer @ Loophole Labs
- Scale Function Runtime (scale.sh)

- (@d_philla
- Wasm Chicago Group (wasmchicago.org)

@d_philla



What is WebAssembly?

- WebAssembly (abbreviated Wasm) is a safe, portable,
low-level code format designed for efficient execution and

compact representation
- Safe, sandboxed execution env, “deny-by-default”, makes

no assumption about languages, or host.
- Analogy: “Virtual CPU"

@d_philla



Cont'd:

- A Compilation Target

- A Virtual Instruction Set Architecture (ISA)
-Bytecode binary format

- Stack Machine

@d_philla



Wait, what?

- |n a broad sense, Wasm is just another architecture
- Key diffs:
- Virtualized
- Needs a runtime to translate to Machine code
- Universal

@d_philla



A client-side technology?

- Safe, sandboxed execution environment... makes no

assumption about languages, or host.
- “Cold start” times In nano- to micro-seconds

- Universal compilation target

- Wasm = Web && Wasm = Assembly

@d_philla



Server-side WebAssembly

-Cloud Infrastructure’s “Penicillin Moment”
-VMs - Containers - WebAssembly
-smaller, safer, *faster, (much more) universal.

@d_philla


https://twitter.com/solomonstre/status/1111004913222324225

- System Interface

- - Initially POSIX Interface for Wasm
-Capabillity-based security

-evolving standard: Preview 1, 2, 3 (Future)

-Is It required ?

@d_philla


https://wasi.dev/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/

Scale

Plugin framework

Serverless function runtime
Polyglot programming in the
same runtime environment
written in golang

Current plugin support for rust,
go, typescript

https://scale.sh



Building : Assumptions

- Assumptions:
- Unix
- Filesystem
- Dynamic Linking
- Syscalls/Libc

@d_philla


https://github.com/python/cpython/blob/main/Tools/wasm/README.md

Pain-points

- Limited number of supported Syscalls
- No pthread APIs

- No socket APlIs
- Non-comprehensive signal support

- More Detall: Christian Heimes'

@d_philla


https://www.youtube.com/watch?v=B52cSnNOrFM

® boxer

Container Declaration-> Wasm Binary (+ runtime)
boxer.dev

@d_philla



What is in a (Wasm) Box?

e Base layer

e VFS + Virtualized
Sys Code Stubs

e Compiled runtime

e User source code

e Exports/Imports

@d_philla



How?

- libc/syscall Interfaces (wasm-libc, wasi-libc)
- a sandboxed FS (wasm-vfs)
- wizer

> FROM ubuntu: latest
> RUN mkdir -p /app
= COPY a.out /app

- WORKDIR /app

= (MD ["/app/a.out"]

@d_philla



wasm-vfs

- Implemented Syscalls

- POSIX semantics

- Key differences with sync/flush/lock and more
- Architecture Patterns

- (code)

@d_philla


https://github.com/dphilla/wasm-vfs

@d_philla



% (Big) Caveats

Threads
Networking

Native Dependencies, the problem, and what to do
- What the benefits Wasm-ifying these does, though

Future work, current solutions

@d_philla



é. .pr}

priwed e

AR e S R % ‘i”

AL "
ﬁ.o‘ﬁ Yaba s % 377

2 e g TN\ Y ¢ (v:
YaE LT o \ .
s ZAL TV A a4 AN .ﬂqo .&ﬂ.,r

Av .S

N

SO

ok BTt

an .

el
Tho s

@d_philla




Key Python Deployment Metrics

Containers g.oxe1s6
Size: 80 - 900mb ize: 16 mb
Startup Speed: 800ms - ~2s Startup Speed ~100us - ~1 ms:

, Security Model: Virtualized
SeCU”ty Model: Shared Kernel Sandb()yxed' Machine code

execution

@d_philla



The Future

- Full support for Libc + Syscall Interfaces: Import/Exports, runtime host function
generation

- Modularize Kernel Stacks @9
- Pluggable, Networking stack, etc.

- Wasm VFS
- Shims, when needed, modules elsewhere

- A Paradigm-shift: A kernel-free, composable, universal Wasm-based Operating

Environment
- WAS]

- WALI
- Baremetal Runtimes + Unikernel, etc.

- Unprecedented, True Isomorphism

@d_philla



@d_philla



Loophole Labs

twitter: @LoopholelLabs
web: loopholelabs.io

discord: loopholelabs.io/discord




Dan Phillips

' Engineer / Wasm Lead

twitter: d_philla
web: loopholelabs.io

inkedin: linkedin.com/in/d-philla/

Loophole Labs



