
PONSARD Christophe
NAM-IP Computer Museum

FOSDEM 24 – Retrocomputing – February 4

The big adventure of little professor
and its 4-bits handheld friends

running TMS 1000

Context – NAM-IP Computer Museum
• Located in Namur/Belgium - 30’ from Brussels

- worth a visit if you are staying a few days I Belgium after FOSDEM)
- also: Pixel Museum (in BXL) & HomeComputerMuseum (in Eindhoven/NL not so far)

• Missions:

• Preservation: safeguarding digital heritage, focus on local pioneers

• Acquisition of artefacts, enriching collections: Bull, Burroughs/Unysis, I&B,…

• Exhibitions: for all, specific animation, permanent/temporary

• Research: about machines, software, communities ➔ here BULL TMS1K

• “Container design”, an historical parallel

www.nam-ip.be

http://www.nam-ip.be/

How it started by a donation

“Little Professor” (v1978)

What is it ?

• Launched in 1976 by Texas Instruments ($20)

• “Inverted” calculator = “learning aid” (5-9 yo)

• Generate problems + - * / (4 levels)

• 10 problems, 3 trials before showing answer
(later versions reduced to 5 + more “rewards”)

• Iconic look “wise and friendly owl”

• Huge success
➔many variants/successors by TI

➔In “collective memory” (and museums – here HNF)

Some variants and versions

1975
OWL predecessor
(nat. semicond.)
no generator

1976-1978-1982-now
problems
+ companion game

later: tables

1977 wiz-a-tron
checker
no generator

1980 Math Marvel
problems, tables
speed, zap, check
guess

1977 DataMan
tables, problems
guess, box
2P: force out, orbit

1989 Prof 123
problems/box, tables

Also calculator !

Versions
Variants

See
http://www.datamath.org

Huge work by
Joerg Woerner !

http://www.datamath.org/

Looking inside – what’s under the hood ?

• How does it work ? How is low cost / product lines achieved ?

• ANSWER:
• same technology as in calculators ☺

• few components ➔ single chip calculator = microcontroller (not µP) !

• system is typically reduced to single chip + display/keyboard

TMS0975

TMS1100

A look at the die

• xxx

From RAM – see http://www.righto.com/2020/11 - including move from PMOS to CMOS - great analysis by Ken Shirriff

http://www.righto.com/2020/11

Discovering the TMS “1000” family

• a family of microcontrollers introduced by TI in 1974
• actually not first generation, so already experienced !

• “computer on chip” combining
• a 4-bit central processor unit,
• read-only memory (ROM)
• random access memory (RAM)
• input/output (I/O) lines

• Note:
• Need custom die for each ROM

but also provides protection)
• CORE design : TMS
➔ customer version : TMC

• Harvard architecture >< von Neumann

Harvard vs Von Neumann architecture (reminder)

➔ Pending question: how to dump ROM ?? (we need it for emulation !)

Timeline

G
am

e
&

 W
at

ch

M
ic

ro
-c

o
m

p
u

te
rs

First IC
Kilby 1958 (GE - TI)
&Noyce (SI ➔Intel)

Handheld games not core market: many calculators !

Comparison with 4004 vs TMS 1000

Intel 4004 TMS 1000 family

Year 1971-1981 1974-(1989)

Transistors 2300 4000

Freq 750 KHz 200-450 KHz

Price $60 $2-$4

Sales About 1 million in total Millions/year

Type Microprocessor: DEC, REG, ALU
➔ Complex integration

Microcontroller: DEC, REG, ALU, RAM+ROM, CLOCK, IO
➔ Single chip

Architecture Von Neumann Harvard

Bus 4 bits (external/internal) data + address 4 bits (internal)

Instruction set 46 (mostly 8 bits), BCD oriented 43 (base, 8 bits) BCD arithmetic, no logical/shift

Registers 16 (nibbles) 2.5: accumulator + X-Y pointer to RAM (used as registers)

RAM ~1024 nibbles (max 4500 bytes) 64-128 nibbles

ROM Typically 4K 1K-4K

Applications pinball machines, traffic light controllers, cash
registers, bank teller terminals, blood
analyzers, gas station monitors

Many calculators, digital clocks, handheld games, printer
controllers, data terminals, appliance control, automotive
applications

Programming TMS 1000

• manual from 1975 (232 pages)
• architecture

• instruction set, addressing

• micro-code

• example of routines, memory mngt

• Other interesting documents: patents !
• Very well documented

• Sometimes with ROM dump in source

TMS 1000 Registers, Memory and Flags

Memory typically used as real “registers”

Tabular addressing 4x16 nibbles

(X,Y) used to point on memoryNote: memory paginated

Need to manage page switching
for long branch/call (using LDP + buff)

Question: where is the stack ?

Instruction set
• 43 instructions (base)

• 4 forms:
• Jump

(page of 64 bytes)
e.g. BR <addr>

• Immediate
with nibble
e.g. ALEC <val>

• Immediate
with X (2 bits)
e.g. LDX <val>

• No operand
e.g. COMX, IA,

TMA, XMA

• Regular ?

• What is missing ?

Sample instruction description

Example BCD Addition

• Why BCD ? conversions, rounding, power of 10,…

• Representations: 1 nibbles = 1 digit but some unused (invalid valued)
• Valid: 0->9

• Invalid: A->F (1010, 1011, 1100, 1111)

• Rules for addition

Example of BCD Addition

• XX

Example of BCD Addition

Y=9:
9+7= 16 = 0x10
Corrected to 0+6=6 and A=1

Y=8:
8+8+1 is performed same way

etc

Reverse Engineering Little Professor (or other) ?

STEP #1 - ROM dump – answer to question ?

➔ Using TEST MODE (from patent) – no sure any success

➔ from die decaps and shots !
• thanks Sean Riddle - https://seanriddle.com/decap.html)

• requires reordering (patent helpful, can vary)

• See also: https://github.com/veniamin-ilmer/decoding_rom

16 pages

6
4

 b
its

16x64x1B = 1KB

mapping = [3, 4, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, 60,

 0, 7, 8, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63,

 2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, 45, 50, 53, 58, 61,

 1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62]

algo adapted from web but does not seem to match

def convert(tab):

 rx = 0

 res = [0] * (int)(len(tab)/8)

 for page in range(0,16):

 for pc in range(0,64):

 for bit in range(7,-1,-1):

 if page<8 :

 rbi = pc*128+bit*16+page

 else:

 rbi = pc*128+bit*16+23-page

 res[rx]=res[rx]*2+tab[rbi]

 rx = rx+1

 return res

def reorder(tab):

 res = [0] * len(tab)

 for i in range(0,len(tab)):

 r = i % 64

 d = i // 64

 res[i] = tab[d*64+mapping[r]]

 if (i<4): print(str(r)+" "+str(d)+" "+str(r)+" "+str(mapping[r])+" "+hex(res[i]))

 return res

['0x4f', '0x3c', '0x1e', '0x20', '0x32', '0xe4', '0x9b’…

https://seanriddle.com/decap.html
https://github.com/veniamin-ilmer/decoding_rom

Reverse Engineering ➔ decompiling

Can use assembler/disassembler - e.g. naken (GPL v3) - https://www.mikekohn.net/micro/naken_asm.php

> naken_utils –disasm –tms1000 –bin tmc1993nl

naken_util - by Michael Kohn - Joe Davisson

Web: http://www.mikekohn.net/

Email: mike@mikekohn.net

Loaded bin tmc1993nl from 0x0000 to 0x03ff

Type help for a list of commands.

Linr Addr Opcode Instruction Cycles

---- ---- ------ ---------------------------------- ------

000 0/00: 4f tcy 15 6

001 0/01: 3c ldx 0 6

002 0/03: 20 tamiy 6

003 0/07: 43 tcy 12 6

004 0/0f: 32 sbit 1 6

005 0/1f: 4d tcy 11 6

006 0/3f: 20 tamiy 6

007 0/3e: 4f tcy 15 6

008 0/3d: 18 ldp 1 6

009 0/3b: 2a dman 6

00a 0/37: 9e br 0x1e (linear_address=0x0c) 6

00b 0/2f: 4d tcy 11 6

00c 0/1e: 9b br 0x1b (linear_address=0x26) 6

https://www.mikekohn.net/micro/naken_asm.php

debug mode

2 operands and answer
in first nimbles of X=2,3,4

Looks familiar
ADD + BCD correction

More Fun - From Little Professor to Big Professor

• Rebuilding in A3 format
➔ goal improve museum interactivity for kids

• Build from scratch using present day techniques:
3D printing, Arduino, LED panels

• Respect spirit: aspect, global experience

• But not strict
• Emulating, not running “original ROMS” (but could)

• Could play alternative games (guesser, box,…) of “cousins”

• Better rewarding, e.g. retro animation (pacman, invaders,…)

• Nice feedback from first exhibitions
• Parents recognise it

• Kids play with it + look inside

Quick Look Inside

• Keyboard matrix
• cheap PC keys
• scanned row/columns
• similar to design

(not intentionally)

• LED display:
• serially addressed (SPI)
• mimics red LED
• more possibilities (for future)

e.g. animations supported

• Open design available soon
(thingiverse/instructables)

Conclusion

• Many discoveries starting from a donation
• Rediscovery of an iconic game

• Technical journey in the early days of microcontrollers/microprocessors

• Preservation of rich history through emulation/rebuilding

• Link between past and future

• On-going work: app version !
• Using MIT app inventor ➔ also a way to learn coding to kids

Questions ?

Credits to:
• Sean Riddle for incredible die shots and so many ROM dumps
• Ken Shirriff for great reverse engineering and technology history @CHM
• My kids and Incubhacker (Namur) for “maker” support

Some references
• https://github.com/NAMIP-Computer-Museum/tms1000 (➔ curated resources)

• https://hackaday.com/2020/02/18/the-tms1000-the-first-commercially-available-microcontroller

• https://www.eejournal.com/article/a-history-of-early-microcontrollers-part-2-the-texas-instruments-tms1000

Visit us: www.nam-ip.be Twitter @ComputerMuseumB

Contact me: christophe.ponsard@gmail.com @cponsard @cponsard@ludosphere.fr

https://github.com/NAMIP-Computer-Museum/tms1000
https://hackaday.com/2020/02/18/the-tms1000-the-first-commercially-available-microcontroller
https://www.eejournal.com/article/a-history-of-early-microcontrollers-part-2-the-texas-instruments-tms1000
http://www.nam-ip.be/
mailto:christophe.ponsard@gmail.com

	Diapositive 1
	Diapositive 2 Context – NAM-IP Computer Museum
	Diapositive 3 How it started by a donation
	Diapositive 4 What is it ?
	Diapositive 5 Some variants and versions
	Diapositive 6 Versions Variants
	Diapositive 7 Looking inside – what’s under the hood ?
	Diapositive 8 A look at the die
	Diapositive 9 Discovering the TMS “1000” family
	Diapositive 10 Harvard vs Von Neumann architecture (reminder)
	Diapositive 11 Timeline
	Diapositive 12 Handheld games not core market: many calculators !
	Diapositive 13 Comparison with 4004 vs TMS 1000
	Diapositive 14 Programming TMS 1000
	Diapositive 15 TMS 1000 Registers, Memory and Flags
	Diapositive 16 Instruction set
	Diapositive 17 Sample instruction description
	Diapositive 18 Example BCD Addition
	Diapositive 19 Example of BCD Addition
	Diapositive 20 Example of BCD Addition
	Diapositive 21 Reverse Engineering Little Professor (or other) ?
	Diapositive 22 Reverse Engineering  decompiling
	Diapositive 23 debug mode
	Diapositive 24 More Fun - From Little Professor to Big Professor
	Diapositive 25 Quick Look Inside
	Diapositive 26 Conclusion
	Diapositive 27 Questions ?

