Computer
Museum

The big adventure of little professor
and its 4-bits handheld friends
running TMS 1000

PONSARD Christophe
NAM-IP Computer Museum

FOSDEM 24 — Retrocomputing — February 4

Computer
Context — NAM-IP Computer Museum RIS ={8]g5

* Located in Namur/Belgium - 30’ from Brussels NAM-IP

- worth a visit if you are staying a few days | Belgium after FOSDEM) :
www.nam-ip.be
- also: Pixel Museum (in BXL) & HomeComputerMuseum (in Eindhoven/NL not so far) g

* Missions:
* Preservation: safeguarding digital heritage, focus on local pioneers

* Acquisition of artefacts, enriching collections: Bull, Burroughs/Unysis, 1&B,...
 Exhibitions: for all, specific animation, permanent/temporary
* Research: about machines, software, communities = here BULL TMS1K

* “Container design”, an historical parallel

4 “an &. i e ! ‘
b] g — —— S TR '
| | et do 1Y

‘ ‘ e " SNNoevene |

LI2VIODVTe0
& 20900

¥, & 3 J:“ r‘;l f‘

e EBne

http://www.nam-ip.be/

How it started by a donation

“Little Professor” (v1978) : mm%,mmmm ==

ITELE PROFESSOR

What is it ?

* Launched in 1976 by Texas Instruments ($20)
* “Inverted” calculator = “learning aid” (5-9 yo)
* Generate problems +-*/ (4 levels)

* 10 problems, 3 trials before showing answer
(later versions reduced to 5 + more “rewards”)

* [conic look “wise and friendly owl”

* Huge success
=>» many variants/successors by Tl
=2 n “collective memory” (and museums — here HNF)

'LITTLE PROFESSOR™

AP Tevan e eeiminn

Some variants and versions

1975 1976-1978-1982-now 1977 wiz-a-tron 1977 DataMan 1980 Math Marvel 1989 Prof 123
OWL predecessor Problems checker tables, problems problems, tables ~ Problems/box, tables
(nat. semicond.) *companiongame 4 ganerator guess, box speed, zap, check

2P: force out, orbit guess Also calculator !

no generator later: tables

Versions
Variants

See
http://www.datamath.org

Huge work by
Joerg Woerner !

Texas Instruments Educational Products
o Little Professor

1976

1976 1976
Version XC

Version A Version B Version C

¢ Math and Word Games

s0coefee

DataMan LETTER logic | LETTER logic

(ER)

LETTER logic

Version B Version D (UK)

Math Magic
enger

Wiz-A-Tron ‘ Wiz-A-Tron

MathMarvel ‘ Mr.Chal-

SpellingB SpellingB
Version 2 (UK)

Spelling ABC
{UK)

Spelling
ABC

» Later Math and Word Games

- T
»
y ¢ O00KL-

Q001
QOO

MathStar Les Nombres MathsStar Mathe-Star
Magiques

Math...
ToGo!

Words...
ToGo!

Professor
ABC

Professor
Time

Time...
ToGo!

Professor
323

Mickey
Math Adv.

Mickey 123 My Little Little Computer
Computer

http://www.datamath.org/

Looking inside —what’s under the hood ?

* How does it work ? How is low cost / product lines achieved ?
* ANSWER:

* same technology as in calculators ©
« few components =2 single chip calculator = microcontroller (not pP) !
 system is typically reduced to single chip + display/keyboard

TMS1100

A look at the die

65 - output buffers

52 - accumulator

40 - RAM Y register

50 - adder

66 - status logic

60 - instruction PLA

82 - power up clear circuit
47 - address buffer

46 - page address buffer
56 - CKB logic

36 - program counter

43 - subroutine register
75 - keyboard input

86 - output buffers

24 - ROM

27 - ROM/RAM word address decoder
25 - RAM

84 - output register

39 - data select

29 - RAM page decoder
73 - RAM page address register
80 - clock generator

70 - RAM write control

51 - adder input select

62 - output register

22 - oscillator input pin

23 - oscillator output pin
63 - segment decoder PLA

From RAM —see http://www.righto.com/2020/11 - including move from PMOS to CMOS - great analysis by Ken Shirriff

http://www.righto.com/2020/11

Discovering the TMS “1000” family

 a family of microcontrollers introduced by Tl in 1974

 actually not first generation, so already experienced ! B oureuts
e “computer on chip” combining // —< i
* a4-bit central processor unit, < s oo /).e&’/ stwonos)
* read-only memory (ROM) T / :
* random access memory (RAM) e L % "“"‘“‘j {’
* input/output (I/0) lines ek g
* Note: / a— _‘_l
* Need custom die for each ROM rn——— 4 f /
but also provides protection) coms ! k # : e
* CORE design : TMS { A
=» customer version : TMC LT P I T
e Harvard architecture >< von Neumann o quteurs

FIGURE 3 — TMS 1000/1200 LOGIC BLOCKS

Harvard vs Von Neumann architecture (reminder)

Von Neumann Architecture

ROM
central address bus
processing unit
(CPL)
Harvard Architecture
program address bus Jm— address bus> data
'('::g:;)y processing unit Tl:::d')y
nonvolatile (CPU) ; volatile

=» Pending question: how to dump ROM ?? (we need it for emulation !)

| TMS1802 [1st GEN 4 bits SINGLE CHIP CALC] Iﬁmﬁ TMS0100 | » Datamath

Sei. notahon%hml Int.

| TMS0120 TMS0700 | | TMS 800 FAMILY [2nd GEN 4 bits SINGLE CHIP CALC]

1970

Y
Sinclair Scientific

4TI VI

TMS 1000 FAMILY [3rd GEN 4 bits SINGLE CHIP CALC]

First IC
Kilby 1958 (GE-TI) [
&Noyce (S| =»Intel)

l More ROMRA)
1976 TMC0980

l more RAMROM
1977 TMS1100

Timeline A

1978 Merlin r Simon

TMC1980

TMC0260

TMC0270

l more RAMRO)
1979 TMS 1400

1980 Microvision

1981 MasterMerlin

1982 R Little Professor's2

1986 MathStar
' .
1989 MathToGo

Little Professor'76

BattleShip TMC0900 | | TMC1990 MathMagic

) A
Speakspell . Little Professor'78

TMS 7000 FAMILY (8bits)

DataMan

\

1985 : Little Professor'ss

Micro-computers

Game & Watch

Handheld games not

+ Wedge Line

RS [=3 —-—|

R @'“PL' ez I

Sann

= Classic First Generation

+ Classic Second Generation

EES1A

core market: many calculators !

» First TI-LCD and Early Slimline LCD's

T1-25 ([sR-40icp| 7Tr20 ([Tr30ico| Tras Investment [Business
Varsmnz Analyst | Analyst-1T

« Later Slimline LCD's and First TI-Solar LCD

251
23
TI1-30-11 |TI-30 LCD TI-35 BA-35 T1-1890 T1-2001 1-2001 T1-2001 T1-2001 T1-2001 TI LOGpit TI-30 SLR
silver nt | Converter | 7yo0p; | STL(E) | SIL(D | GG | GIL(E) | ‘GIL(N). T1 LoGpit
Analyst GTI (F)

1

TL55 11 [TI—SS 11

n

TI-55 111
A

| 11-53 1 1153 in-sszns

5711
Tavan

T-S711 | Teszar
Italy Italy

Comparison with 4004 vs TMS 1000

Intel 4004 X sy TMS 1000 family ek 13

Year 1971-1981 1974-(1989)

Transistors 2300 4000

Freq 750 KHz 200-450 KHz

Price S60 $2-54

Sales About 1 million in total Millions/year

Type Microprocessor: DEC, REG, ALU Microcontroller: DEC, REG, ALU, RAM+ROM, CLOCK, IO
=» Complex integration =>» Single chip

Architecture Von Neumann Harvard

Bus 4 bits (external/internal) data + address 4 bits (internal)

Instruction set 46 (mostly 8 bits), BCD oriented 43 (base, 8 bits) BCD arithmetic, no logical/shift

Registers 16 (nibbles) 2.5: accumulator + X-Y pointer to RAM (used as registers)

RAM ~1024 nibbles (max 4500 bytes) 64-128 nibbles

ROM Typically 4K 1K-4K

Applications pinball machines, traffic light controllers, cash Many calculators, digital clocks, handheld games, printer
registers, bank teller terminals, blood controllers, data terminals, appliance control, automotive

analyzers, gas station monitors applications

Programming TMS 1000

The Engineering Staff of o

TEXAS INSTRUMENTS INCORPORATED] °* Ma nual from 1975 (232 pageS)

Semiconductor Group
e architecture
* instruction set, addressing

* micro-code
e example of routines, memory mngt

Programmer’s
Reference
Manual

* Other interesting documents: patents !

* Very well documented
* Sometimes with ROM dump in source

TMS 1000 Series Nl
MOS/LSI One-Chip
“Microcomputers

TEXAS INSTRUMENTS
INCORPORATED

TMS 1000 Registers, Memory and Flags

TMS1000 registers

0g 0g 0, 05 050, 0,0, 0, 0y (pijt position)
A accumulator
X Y mem pointer

page add program ctr next instruction
page buff subroutine ret long branch/return
Branch status flags

C S call latch/branch

Note: memory paginated

Need to manage page switching
for long branch/call (using LDP + buff)

Question: where is the stack ?

FILE

REGISTER

Y-REGISTER ADDRESS

P I Y I\ AN
X=10 F O; M:D 0 9 8 7 6 5 4 3 2 LfD

Memory typically used as rea
Tabular addressing 4x16 nibbles

(X,Y) used to point on memory

registers”

Instruction set

e 43 instructions (base)

e 4 forms:

* Jump
(page of 64 bytes)
e.g. BR <addr>

* Immediate
with nibble
e.g. ALEC <val>

* Immediate
with X (2 bits)
e.g. LDX <val>

* No operand
e.g. COMX, IA,
TMA, XMA

 Regular?

e What is missing ?

STATUS

0 4 6 7
| ! I T I
op w
1 1 | 1 |
MSB LSB
0 4 6 7
| 1 I ! I
op
1 1 | 1 |
LSB MSB
0 4 6 7
1 I I I 1 |
opP B
| 1 1 | | |
LSB MSB
0 4 6 7
1 | I | I |
oP B
| _ | | | 1
LSB MSB

FUNCTION {MNEMONIC | EFFECTS DESCRIPTION
Cc N
Register to |TAY Transfer accumulator to Y register.
Register TYA Transfer Y register to accumulator.
CLA Clear accumulator.
Transfer TAM Transfer accumulator to memory.
Register to |TAMIY Transfer accumulator to memory and increment Y register.
Memory TAMZA Transfer accumulator to memory and zero accumulator.
Memory to | TMY Transfer memory to Y register.
Register TMA Transfer memory to accumulator,
XMA Exchange memory and accumulator.
Arithmetic |AMAAC Y Add memory to accumulator, results to accumulator. If carry, one to status.
SAMAN Y Subtract accumulator from memory, results to accumulator.
If no borrow, one to status.
IMAC Y Increment memory and load into accumulator. If carry, one to status.
DMAN Y Decrement memory and load into accumulator. If no borrow, one to status.
1A Increment accumulator, no status effect.
IYC Y Increment Y register. If carry, one to status.
DAN Y Decrement accumulator. If no borrow, one to status.
DYN Y Decrement Y register. |f no borrow, one to status.
ABAAC Y Add 8 to accumulator, results to accumulator. If carry, one to status.
AT0AAC Y Add 10 to accumulator, results to accumulator, If carry, one to status.
ABAAC Y Add 6 to accumulator, results to accumulator. If carry, one to status.
CPAIZ Y Complement accumulator and increment. If then zero, one to status.
Arithmetic |ALEM Y If accumulator less than or equal to memory, one to status.
Compare ALEC Y If accumulator less than or equal to a constant, one to status
Logical MNEZ Y | If memory not equal to zero, one to status.
Compare YNEA Y | If Y register not equal to accumulator, one to status.
YNEC Y | If Y register not equal to a constant, one to status
Bits in SBIT Set memory bit.
Memory RBIT Reset memory bit.
TBIT1 Y | Test memory bit. If equal to one, one to status.
Constants TCY Transfer constant to Y register.
TCMIY Transfer constant to memory and increment Y.
Input KNEZ Y | If Kinputs not equal to zero, one to status.
TKA Transfer K inputs to accumulator.
Output SETR Set R output addressed by Y.
RSTR Reset R output addressed by Y,
TDO Transfer data from accumulator and status latch to O outputs.
CLO Clear O-output register.
RAM "X’ LDX Load ‘X’ with a constant.
Addressing |COMX Complement ‘X',
ROM BR Branch on status = one.
Addressing |[CALL Call subroutine on status = one.
RETN Return from subroutine.
LDP Load page buffer with constant.

Sample instruction description

4-4.1 ADD MEMORY TO ACCUMULATOR, RESULTS TO ACCUMULATOR.

MNEMONIC:

STATUS:

FORMAT:

ACTION:

DESCRIPTION:

MICROINSTRUCTIONS:

0 1 2 3 4 5 6 7

AMAAC o 0 1 o0 o 1 0o 1

Carry into status
IV

M(X,Y) + A~ A
1- Sifsum> 15
0 Sif sum < 15

The contents of the memory location addressed by the X and Y
registers are added to the contents of the accumulator. The
result is stored into the accumulator. The resulting carry
information is transferred to status. A sum that is greater than
15 results in a carry and a ONE to status. Memory contents arc
unaltered.

MTP, ATN, C8, AUTA

Example BCD Addition

« Why BCD ? conversions, rounding, power of 10,...

* Representations: 1 nibbles = 1 digit but some unused (invalid valued)
e Valid: 0->9
e Invalid: A->F (1010, 1011, 1100, 1111)

e Rules for addition

e Step 1 — Perform addition of two BCD numbers by following the rules
of binary addition.

e Step 2 — If the result or sum is a 4-bit binary number which is less
than or equal to 9, then the sum is a valid BCD number.

e Step 3 — If the sum is a 4-bit number that is greater than 9 or if a
carry is generated, then it is an invalid sum.

e Step 4 — To obtain the corrected result/sum, add 6 (0110) to the 4-bit
invalid sum. If a carry is generated when 6 is added, then propagate
and add this carry to the next 4-bit group. This step is done to skip the
six illegal BCD codes (i.e. 1010, 1011, 1100, 1101, 1110, and 1111).

Example of BCD Addition
SIS

ADGG ADGD REGISTER DEFINITIONS:
0-»X REGISTER | X ADDRESS)
" " ~ ADGG
BCDADD E o1
v 0+ A | F 10 MULTIPLE ENTRY AEFF
€ " POINTS FOR <
| SYMBOL DEFINITIONS: SUBROUTINES AEFE
| M=M (X, Y) = RAM
e content at address X, Y LADG D
A = Contents of Accumulator
X = Contents of X address register é BCDADD
AEFF ¥ = Contents of Y register LOOP
~# = Transfer to
= = Arithmetically compared 10
BASE
SUBROUTINE
CONTAINS
AEFE LOOPING GT9
oo AND 5
BCD
v LT0 CORRECTION
INSTRUCTION
A-+M
0+ DECY
DUAL-ACTION
INSTRUCTION
TEST
INSTRUCTION LT10
DECY STATUS = 1
BRANCH —
INSTRUCTION

NO BORROW ALWAYS BRANCH
(STATUS = 1)

RETURN
INSTRUCTION

LDX

BR

LDX
BR

LDX

BR

LDX
CLA
COMX
AMAAC

COMX
AMAAC

BR
ALEC
BR
ABAAC

TAMZA
1A

DYN
BR
RETN
TAMZA

BR

3
BCDADD
2
BCDADD
1
BCDADD
0

GT9

LT10

LOOP

DECY

3+ X;SetupforD+G—G.
Branch to BCD add.
2—X;SetupforE+ F—>F.
Branch to BCD add.
1->X;Setup forE+F—E.
Branch to BCD add.

0+ X;AddD+G—D.
Clear accumulator (A).

X = X.

M(X,Y) + A A; A contains
possible carry if in loop.

X = X.

Add digits:

M(X, Y) + [M(X,Y) + Carry] = A.

Branch if sum >15.

If A< 9, one to status.
Branch if sum < 10.
Sum>9, A+6—A;

BCD Correction.

Transfer corrected sum

to memory, 0= A,

1 - A; to propagate carry

Y — 1Y, index next digit.
If no borrow, continue.

If borrow, return to
instruction after call.

Sum <9, A= M({X,Y);0>A;
No carry propagated.

Example of BCD Addition

LABEL OPCODE OPERAND COMMENT
MAIN PROGRAM TCY 8 Transfer 8 =Y
PRESETS Y, CALL ADGD Add: D+G—=D
AND CALL TCY 15 Transfer 16> Y
SUBROUTINES CALL AEFE Add: E+F—=E
FILE REGISTER Y-REGISTER ADDRESS
ADDRESS 1] 1 2 4 5 6 7 8 9 10 1 12 13 14 15
ov | MsD LSD ww\\‘%w\\ \
X = 00 D o| 9 |8 6 |5 |4]| 3| 2 N & & && &
oV | MSD LSD
X=01 E 0 1 2 4 5 6 7 8 9 \ 0 1 2 3 4 5
ov | msp LSD
X=10 F o 5 4 2 1 0 9 8 7 6 5 4 3 2 1
oV | MSD LSD w w s\\ s \
X=11 G 0 8 7 5 4 3 2 1 R & & &x
FILE Y-REGISTER ADDRESS
REGISTER
ADDRESS 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
ov | MsD LSD Q Q \ Q s \ \
X =00 D 1 8 6 4 1 9 7 5 3 k & &k & % \
ov | MsD LSD
X=Mm E 0 6 6 (5] 6 6 7 7 7 q 6 6 6 6 6 6
oV | MsD LSD
X=10 F 0 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1
oV | MsSD LSD Q S “ Q NQN
X =11 G o| 8 |7 |6 |5 |a |3] 2]n1 k \ & \ & &'\\

Y=9:
9+7=16 = 0x10
Corrected to 0+6=6 and A=1

Y=8:
8+8+1 is performed same way

etc

Reverse Engineering Little Professor (or other) ?

STEP #1 - ROM dump — answer to question ?
=» Using TEST MODE (from patent) — no sure any success

mapping = [

=» from die decaps and shots !

* thanks Sean Riddle - https://seanriddle.com/decap.html) convert(tab):

X =
* requires reordering (patent helpful, can vary) res = [0] * (int)(len(tab)/8)
e See also: https://github.com/veniamin-ilmer/decoding rom pasge (;

B

rbi = pc*128+bit*16+page

rbi = pc*128+bit*16+23-page
res[rx]=res[rx]*2+tab[rbi]
X = rx+
res

reorder(tab):
res = [0] * len(tab)
[((tab)):
r=i%
d=ill
res[i] = tab[d*64+mapping[r]]
(i<4): (str(r)+" “+str(d)+" "+str(r)+" "+str(mapping[r])+" “+hex(resfi]))
res

['Ox4f', 'Ox3c', 'Ox1e’, '0x20', '0x32', 'Oxed’, '0x9b’...

https://seanriddle.com/decap.html
https://github.com/veniamin-ilmer/decoding_rom

Reverse Engineering =2 decompiling

Can use assembler/disassembler - e.g. naken (GPL v3) - https://www.mikekohn.net/micro/naken asm.php

> naken utils —-disasm —-tmsl000 -bin tmcl993nl

naken util - by Michael Kohn - Joe Davisson
Web: http://www.mikekohn.net/

Email: mike@mikekohn.net

Loaded bin tmcl993nl from 0x0000 to 0x03ff
Type help for a list of commands.

Linr Addr Opcode Instruction Cycles
000 0/00: 4f tcy 15

001 0/01: 3c 1dx 0

002 0/03: 20 tamiy

003 0/07: 43 tcy 12

004 0/0f: 32 sbit 1

005 O0/1f: 4d tcy 11

006 0/3f: 20 tamiy

007 0/3e: 4f tcy 15

008 0/3d: 18 ldp 1

009 0/3b: 2a dman

00a 0/37: %e br Oxle (linear address=0x0c)
00b 0/2f: 4d tcy 11

00c 0/le: 9b br 0Oxlb (linear address=0x26)

A O O O O O O O O O O O O

https://www.mikekohn.net/micro/naken_asm.php

debug mode

2d5 b/2b: 9c br @xlc (linear_address=8x28) 6
2d6 b/l6: b4 br 8x34 (linear_address=8x2a) 6 |
2d7 b/2c: @3 &2 M Debug: lilprofa - Texas Instruments TM51990 maincpu’ x
2d8 b/18: fb6 call @x36 (linear_address= — . .
2d9 b/3@: bf br @x3f (linear_address=@y Debug Options Debug Options _Settings _
2da b/21: 83 tam |0‘ Texas Instruments TMS1990 ':maincpu' - c¥%'|a§§ PSJ.;e cs1 gé
2db by@2: 13 ldp 12 oo OF~8E OE OF OA 04 05 00 00 04 00 03 08 01 04 ieinnnnnns | fmm——m—m—mmmmmm 40
. LU 09 03 00\OO 00 0O 00 0O 09 03 00O OO0 OO0 0O D9 O3 PC 13 3E
;j: Eﬁgg ;i 53113@"% (linear_address< 0 00 00 00 00 02 06 DO 00 OO 0O 06 02 SR 2 25
B X 30 01 00 000 00 00 00 00 00 00 OF OF OF OF OF 07 PA B °|: 3F
2de b/17: 13 1dp 12 = A LOOkS fa| | ||I|ar 2
2df b/2e: c@ call 8x08 (linear_address= 2 d d X 3 79
2e8 bflc: bf br @x3f (linear address=0x 0] pe rands an answer ol 3

2el b/38: 15 1dp 18

lecleelecle lecReceaRec e cleaBecReiea Mo e Res Nes Moo Wes Ne s NeaNea B N

2e2 b/31: 3a thbitl 1 1 f H bl f X=2 3 4

2e3 b/23: 80 br 8x80 (linear_address=: In IrSt nlm eS O 1) gg
Jed b/@6: 32 sbit 1 ol
2e5 b/ed: 1b 1dp 13 0E
2e6 b/lb: 91 br 8x11 (linear address=8x2f) Eoal ShancH f13 3
2e7 bf36: 2f cla 15 CLA 2F
2e8 b/2d: 40 S R 2

2e9 bfla: 3e ldx 1

Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint
Stopped at watchpoint

writing 00 to 30 (PC=2ES5)
writing 00 to 31 (PC=2E5)
writing 00 to 30 (PC=2E5)
writing 00 to 31 (PC=2E5)
writing 02 to 31 (PC=307)
writing 00 to 30 (PC=307)
writing 00 to 30 (PC=2E5)
writing 02 to 31 (PC=2E5)
writing 00 to 30 (PC=2ES5)
writing 02 to 31 (PC=2ES5)
writing 00 to 30 (PC=2E5)
writing 02 to 31 (PC=2E5)
writing 00 to 30 (PC=2E5)
writing 02 to 31 (PC=2ES5)
writing 00 to 30 (PC=2E5)
writing 02 to 31 (PC=2E5)
writing 00 to 30 (PC=2E5)
writing 02 to 31 (PC=2E5)
writing 06 to 31 (PC=307)
writing 02 to 30 (PC=307)
writing 01 to 30 (PC=2C9)
writing 00 to 31 (PC=2C3)

2ea bj/34: 25
2eb b/29: 39
2ec bjf12:
2ed b/24:
2ee b/B8:
2ef bf11:
2fe b/22:
2f1 b/B4d: Be
2f2 b/@9: 68

amaac
ldx 3
amaac
br 8x22 (linear_
alec 9

br 8x32 (linear
tcmiy 6

4ddress=0x30)

fddress=0x37)

2f3 b/13: 2b
2f4 bf26: 52 ynec 4

br 8xla (linear_address=8x29)
retn

GO OO OOy O Oy
v
o+
o
=
o
m
a
o
o

(linear_address=8x33)

More Fun - From Little Professor to Big Professor

* Rebuilding in A3 format
=» goal improve museum interactivity for kids

* Build from scratch using present day techniques:
3D printing, Arduino, LED panels

* Respect spirit: aspect, global experience

But not strict
e Emulating, not running “original ROMS” (but could)
* Could play alternative games (guesser, box,...) of “cousins”
* Better rewarding, e.g. retro animation (pacman, invaders,...)

Nice feedback from first exhibitions
* Parents recognise it
* Kids play with it + look inside

Quick Look Inside

* Keyboard matrix
e cheap PC keys
* scanned row/columns

* similar to design
(not intentionally)

* LED display:
* serially addressed (SPI)
* mimics red LED

* more possibilities (for future)
e.g. animations supported

* Open design available soon
(thingiverse/instructables)

, Computer
Conclusion Museum

* Many discoveries starting from a donation
* Rediscovery of an iconic game
* Technical journey in the early days of microcontrollers/microprocessors
* Preservation of rich history through emulation/rebuilding
* Link between past and future

* On-going work: app version |
* Using MIT app inventor =» also a way to learn coding to kids

Questions ?

Credits to:
e Sean Riddle for incredible die shots and so many ROM dumps
* Ken Shirriff for great reverse engineering and technology history @CHM
* My kids and Incubhacker (Namur) for “maker” support

Some references
* https://github.com/NAMIP-Computer-Museum/tms1000 (=» curated resources)
* https://hackaday.com/2020/02/18/the-tms1000-the-first-commercially-available-microcontroller
* https://www.eejournal.com/article/a-history-of-early-microcontrollers-part-2-the-texas-instruments-tms1000

Visit us: www.nam-ip.be Twitter @ ComputerMuseumB
Contact me: christophe.ponsard@gmail.com @cponsard @cponsard@Iludosphere.fr

https://github.com/NAMIP-Computer-Museum/tms1000
https://hackaday.com/2020/02/18/the-tms1000-the-first-commercially-available-microcontroller
https://www.eejournal.com/article/a-history-of-early-microcontrollers-part-2-the-texas-instruments-tms1000
http://www.nam-ip.be/
mailto:christophe.ponsard@gmail.com

	Diapositive 1
	Diapositive 2 Context – NAM-IP Computer Museum
	Diapositive 3 How it started by a donation
	Diapositive 4 What is it ?
	Diapositive 5 Some variants and versions
	Diapositive 6 Versions Variants
	Diapositive 7 Looking inside – what’s under the hood ?
	Diapositive 8 A look at the die
	Diapositive 9 Discovering the TMS “1000” family
	Diapositive 10 Harvard vs Von Neumann architecture (reminder)
	Diapositive 11 Timeline
	Diapositive 12 Handheld games not core market: many calculators !
	Diapositive 13 Comparison with 4004 vs TMS 1000
	Diapositive 14 Programming TMS 1000
	Diapositive 15 TMS 1000 Registers, Memory and Flags
	Diapositive 16 Instruction set
	Diapositive 17 Sample instruction description
	Diapositive 18 Example BCD Addition
	Diapositive 19 Example of BCD Addition
	Diapositive 20 Example of BCD Addition
	Diapositive 21 Reverse Engineering Little Professor (or other) ?
	Diapositive 22 Reverse Engineering  decompiling
	Diapositive 23 debug mode
	Diapositive 24 More Fun - From Little Professor to Big Professor
	Diapositive 25 Quick Look Inside
	Diapositive 26 Conclusion
	Diapositive 27 Questions ?

