SpiceDB

mature, open-source
ReBAC

’27 avthzed

S whoami

<k

cofounder authzed, creators of SpiceDB

©)

(@)

Previously Red Hat, CoreOS
OCI Maintainer, co-creator Operator Framework, etc...

contact

(@)

o O O O

email immy@authzed.com
github @jzelinskie

X @jimmyzelinskie

bsky @jimmy.zelinskie.com
discord.gg/spicedb @jzelinskie

‘e’ avthzed

Broken Access Control
is #71 on OWASP's Top 10

most critical security risks
to web apps

’2’ avthzed

how did we get here?
Broken Access Control

is #1 on OWASP's Top 10

most critical security risks
to web apps

’2’ authzed

... I'm not pointing any fingers, but ...
let's dive into the history of two groups:

e ACADEMICS
e INDUSTRY PRACTITIONERS

‘_"2’ avthzed

... I'm not pointing any fingers, but ...
let's dive into the history of two groups:

e ACADEMICS

12’ avthzed

ACADEMIA

1983 - DAC/MAC
1992 - RBAC
2015 - ABAC
2019 - ReBAC

Discretionary Access Control
o e.g. file systems/google docs

Mandatory Access Control
o e.g. SELinux

As old as war itself
TCSEC documents DAC/MAC

ACADEMIA

1983 - DAC/MAC
1992 - RBAC
2015 - ABAC
2019 - ReBAC

Role-based access control

o map users to groups that
delegate access

e.g. every enterprise app
you've ever used
It's never the same

ELFSTE

b 'A.-v'~) 1-5‘

ACADEMIA '

1983 - DAC/MAC
1992 - RBAC
2015 - ABAC
2019 - ReBAC

Attribute-based access
control
usually extends RBAC

o "roles" become an attribute
adds real-time context

e Hierarchical file system tree
e Every branch had 5 attributes

o read
o write
o} exec
ACADEMIA . append
o trap
1965 - Multics File system
1983 - DAC/MAC
12%92 - RBA%
15 - ABA e X
2019 - ReBAC ;;C:],;'}'“m@
A

ACADEMIA

1965 - Multics File system
1983 - DAC/MAC

1992 - RBAC

2015 - ABAC

2019 - ReBAC

Relationship-based access
control

2007 - Carrie Gates coins the
term

2019 - Google's Zanzibar
2021 - SpiceDB is OSS

... I'm not pointing any fingers, but ...
let's dive into the history of two groups:

e INDUSTRY PRACTITIONERS

12’ avthzed

INDUSTRY

code embedded in applications

(

-

Monolithic Application

func authorized(u auth.U, allowed [lauth.U) bool {

Iy

for _, allowedUser := range allowed {
if u == allowedUser {
return true
I
}

return false

func (s xServer) HandleObjectRequest(user auth.U, objID int) {

}

allowed := db.GetAuthorizedUsersForObject(objID) —_— |
if lauthorized(user, allowed) {

s.Raise403()
¥

s.SendResponse(db.LoadObject(objID))

7

authzed

INDUSTRY

falls over at some point

<
Traffic scaled past the limits latency (Performance. impabk
of the solution L P
J
s N .
Customers are requesting tricky complexity (Development blocked
features L P
| J
s N (
Entering new geographies, data distribution
isn't distributed L Market excluded, revenue lost
| J

’2’ avthzed

INDUSTRY

a redesign/fix is intricate

1 engineer * (1 month implementation +
1T month QA +
1 month deployment)

= 1T new permission

12’ avthzed

INDUSTRY

rinse & repeat

/

Pain

\

Pe_pla‘tporming -

rep latformi ng__>

Time

\
—

7

authzed

how do we fix it?
Broken Access Control

is #1 on OWASP's Top 10

most critical security risks
to web apps

’2’ authzed

how do we fix it?

"Although RBAC has a long history and remains
popular among software developers today,

ABAC and ReBAC

should typically be preferred for application

development”
— OWASP Authorization Cheat Sheet
’2’ avthzed

why?

fine-grained, complex Boolean logic
speed

robustness

multi-tenancy

management ease

7

authzed

Google

Zanzibar

2019

Zanzibar: Google’s Consistent, Global Authorization System

Ruoming Pang,! Ramén Ciceres,! Mike Burrows,! Zhifeng Chen,! Pratik Dave,!
Nathan Germer,! Alexander Golynski,1 Kevin Graney,l Nina Ka.ng,1 Lea Kissner,2*
Jeffrey L. Korn,! Abhishek Parmar,3* Christina D. Richards,! Mengzhi Wang!
Google, LLC;! Humu, Inc.;? Carbon, Inc.?
{rpang,caceres}@google. com

Abstract

Determining whether online users are authorized to access
digital objects is central to preserving privacy. This pa-
per presents the design, implementation, and deployment
of Zanzibar, a global system for storing and evaluating ac-
cess control lists. Zanzibar provides a uniform data model
and configuration language for expressing a wide range of
access control policies from hundreds of client services at
Google, including Calendar, Cloud, Drive, Maps, Photos,
and YouTube. Its authorization decisions respect causal or-
dering of user actions and thus provide external consistency
amid changes to access control lists and object contents.
Zanzibar scales to trillions of access control lists and millions
of authorization requests per second to support services used
by billions of people. It has maintained 95th-percentile la-
tency of less than 10 milliseconds and availability of greater
than 99.999% over 3 years of production use.

1 Introduction

Many online interactions require authorization checks to
confirm that a user has permission to carry out an operation
on a digital object. For example, web-based photo storage
services typically allow photo owners to share some photos
with friends while keeping other photos private. Such a ser-
vice must check whether a photo has been shared with a user
before allowing that user to view the photo. Robust autho-
rization checks are central to preserving online privacy.

This paper presents Zanzibar, a system for storing per-
missions and performing authorization checks based on the
stored permissions. It is used by a wide array of services
offered by Google, including Calendar, Cloud, Drive, Maps,
Photos, and YouTube. Several of these services manage bil-
lions of objects on behalf of more than a billion users.

A unified authorization system offers important advan-
tages over maintaining separate access control mechanisms

semantics and user experience across applications. Second,
it makes it easier for applications to interoperate, for exam-
ple, to coordinate access control when an object from one ap-
plication embeds an object from another application. Third,
useful common infrastructure can be built on top of a unified
access control system, in particular, a search index that re-
spects access control and works across applications. Finally,
as we show below, authorization poses unique challenges in-
volving data consistency and scalability. It saves engineering
resources to tackle them once across applications.

‘We have the following goals for the Zanzibar system:

Correctness: It must ensure consistency of access con-
trol decisions to respect user intentions.

Flex: : It must support a rich set of access control
policies as required by both consumer and enterprise
applications.

Low latency: It must respond quickly because autho-
rization checks are often in the critical path of user in-
teractions. Low latency at the tail is particularly impor-
tant for serving search results, which often require tens
to hundreds of checks.

High availability: It must reliably respond to requests
because, in the absence of explicit authorizations, client
services would be forced to deny their users access.
Large scale: 1t needs to protect billions of objects
shared by billions of users. It must be deployed around
the globe to be near its clients and their end users.

Zanzibar achieves these goals through a combination of
notable features. To provide flexibility, Zanzibar pairs a sim-
ple data model with a powerful configuration language. The
language allows clients to define arbitrary relations between
users and objects, such as owner, editor, commenter, and
viewer. It includes set-algebraic operators such as inter-
section and union for specifying potentially complex access
control policies in terms of those user-obiect relations. For

wait...what is this magic?

Proofread my outline for the platform engineering meetup talk

: _ Someone needs access to "Platform
Jimmy Zelinskie (authzed.com) Enai ing Outline”
ngineering Outline

Proofread my outline for the platform engineering meetup talk
® Share with people
Hey Jimmy,

Can you check out this outline? I've got the platform engineering meetup coming up and | want

to make a good impression!
Viewer

https://docs.google.com/document/d/1W8xH2ZKNzw3IQLZo5KTOkDSaCTwiRDcbRJOoCKGBP

aoiodi (O Allow anyone in Authzed to view

Thanks,)
Jake]) Don't give access

© & SansSerif v fTv B I U A -

CE="" 00 s

Gmail Google Docs

Cancel Send

©)

authzed

how do | zanzibar?

— you

’2’ avthzed

°
= O authzed |/ spicedb Q Type /) to search D + <~ @O 1 e

<> Code (©) Issues 98 19 Pullrequests 15 GJ) Discussions (») Actions () Security 6 |~ Insights 3 Settings

v spicedb Public 7 EditPins v & Unwatch 37 +~ % Fork 233 - Starred 4.2k -
¥ main ~ ¥ 19 Branches © 69 Tags Q Gotofile t Add file ~ <> Code ~ About 3

Open Source, Google Zanzibar-inspired
permissions database to enable fine-
grained access control for customer
applications

[J README & Code of conduct 3[8 Apache-2.0 license 7 =

SpiceDB
p & authzed.com/docs
openssf best practices 'passing container v1.29.0 [docs authzed.com discord '195 online twitter @authzed kubernetes security

distributed-systems database scale
SpiceDB is an open source, Google Zanzibar-inspired database for creating and managing security-critical latency production permissions acl

application permissions. grpc rbac cloud-native entitlements

Developers create a schema and use client libraries to apply the schema to the database, insert relationships into shec> (Seciinptoon) (Geny (e

the database, and query the database to efficiently check permissions in their applications. fine-grained-access-control | { zanzibar
Features that distinguish SpiceDB from other systems include: 0 Readme
)) o o) 88 Apache-2.0 license
 Expressive gRPC and HTTP/JSON APIs for checking permissions, listing access, and powering devtools T
ode of conduct
« A distributed, parallel graph-engine faithful to the architecture described in Google's Zanzibar paper
A~ Activit
« A flexible consistency model configurable per-request that includes resistance to the New Enemy Problem ¥
; , ; ; s .] . (=) Custom properties
¢ An expressive schema language with a playground and CI/CD integrations for validation and integration testing
v¢ 4.2k stars

¢ A pluaaable storaae svstem sunportina in-memorv Snanner CockroachDR PostareSQl and MvSQ!l

5

"y

but WHAT /S SpiceDB

e highly parallel graph database optimized for authorization queries
gRPC & HTTP API service written in Go
additional servers to power devtools, testing services

definition user {}

definition document {
relation writer: user
relation reader: user

/%%

* edit determines whether a user can edit the document
*/

permission edit = writer

/%%

* view determines whether a user can view the document
*/

permission view = reader + writer

) ’2’ avthzed

S kubectl create SpiceDBCluster

Kubernetes
SpiceDB SpiceDB
Datastore

7

authzed

S kubectl scale

-

region: aws-ap-southeast-3

~

region: aws-us-east-1

permission sys‘tew\: "piedpiper"

t cleployment: ‘south east asia’

7 7

o(qaloyme,n‘t; ‘united states”

l SpiceDB N SpiceDB ' l SpiceDB ’

it

region: ﬂ-us-wesﬂ

~

ﬁefmiss:on system: “hooli"

Jeplot/men’t: ':lakar‘ta”

oo

-

Jeploymen't: ‘east coast"

SpiceDB | | SpiceDB l SpiceDB ’

Jeployment: ‘east coast Pailover'

SpiceDB l SpiceDB ’ l SpiceDB

oleploc/men‘t: ‘west coast”

(Spiceij EspicebB] (SP?Q@BJ

-,

‘e’ authzed

3

"y

S whatis zed

e CLltool for SpiceDB
o

manage credentials, backup/restore, import, validation
commands for SpiceDB APIs + debugging

$ zed permission check ——explain document:firstdoc view user:fred

true

v document:firstdoc view (66.333us)
— x document:firstdoc writer (12.375ps)

L— ~ document:firstdoc reader (20.667us)
L— user:fred

’2’ avthzed

https://play.authzed.com

e web IDE powered by WebAssembly

{Writer

Resource Subject

Type ID Relation Type Subject Relation (opt

document firstdoc writer user
document firstdoc reader user
document seconddoc reader user

<+ Add relationship

PROBLEMS) CHECK WATCHES o «® SYSTEM VISUALIZATION LAST VALIDATION R

Resource Permission Subject

e document:firstdoc e view e user:fred SCHEMA TEST RELATIONSHIPS ASSERTIONS EXPECTED RELATIONS

firstdoc
i 1
firstdoc 0 Validated! ° RUN ACCEPT UPDATE @ REVERT UPDATE

document: firstdoc#view: i
— "[user:tom] is <document:firstdoc#writer>"
- "[user:fred] is <document:firstdoc#reader>" 2 - "[user:fred]

document: firstdoc#vie

is <document:firstdoc#reader>"

3+ - "[user:tom] is <document:firstdoc#writer>"
4 document:seconddoc#vi 4 document: nddoc#vi

— "[user:tom] is <document:seconddoc#reader>" 5 — "[user:tom]
6

is <document:seconddoc#reader>"

g
s

o
{

"2’ avthzed

(),

SpiceDB is Zanzibar +

ABAC support with
SpiceDB “Caveats”

Ability to model more
complex user systems

Relations distinguished
from permissions

More granularly tunable
consistency

SpiceDB

Improved devX: schema
language, playground

Reverse indexing: who
has access to what?

Zanzibar

Relationships as edges
in a graph (ReBAC)

Schema to flexibly interpret
those relationships

Scalable to >106M QPS at
99.999 availability

@ B\
Built to support distributed
data stores

Solves the new enemy problem

e n

with tokens “Zookies”

authzed

A -

how do I spicedb?

— Yyou

discord.gg/spicedb

"27 authzed

thankz!

discord.gg/spicedb

‘e’ authzed

