Linkei‘ S'c'rifp’ts i_'n-
LLD and how they |

chom pare with GNU

Peter Smith ' A '. | ' A
31/01/2024 | |

© 2024 Arm 3 X ' ' oy

Al-generated image

https://fosdem.org/2024/schedule/event/fosdem-2024-2340-linker-scripts-in-lld-and-how-they-compare-with-gnu-ld/
https://fosdem.org/2024/schedule/event/fosdem-2024-2340-linker-scripts-in-lld-and-how-they-compare-with-gnu-ld/
https://fosdem.org/2024/schedule/event/fosdem-2024-2340-linker-scripts-in-lld-and-how-they-compare-with-gnu-ld/

arm

Linker script essentials

What do you need to know to get anything out of
this talk?

ELF components

: : * Relocatable objects and
Relocatable Object File Executable/Shared-object)

executables/shared-objects
use same file format.

ELF Header ELF Header e Sections in relocatable objects
Program Header such as .text are consolidated
= Tale into larger sections in the
output file.
.data Segment 1
Read-only * Segments contain one or more
.bss Executable sections.
 Asegmentis described by a
Segment 2 program header.
Section header Read-write * Program loaders operate on
table segments.

Section header e Section level view present for
table :
debugging.

3 © 2024 Arm a r’m

Linker control scripts

-- A text file written in the linker command language
-- GNU linker Id.bfd always uses a linker script even if none provided.
-- LLD and Id.gold have a separate code-path for when there is no linker script.

-- Command line option -T/--script or as an input file
- When -T/--script used this replaces the default linker script.
- When a linker script is an input file it is combined with all other linker scripts.

-- Controls how sections from input files (input sections) map to the sections in the output

file (output sections).
- .text : { *(.text .text.*) }

-- Control the layout of output sections in memory and the section to segment mapping.

4 © 2024 Arm 0 r m

5

Linker Script lllustrative example

MEMORY

{

}

FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x20000 /* 128K */
RAM (rwx) : ORIGIN = ©x10000000, LENGTH = ©x2000 /* 8K */

SECTIONS <

{

.text : {*(.text*) } >FLASH

&

__exidx_start = .; <
.ARM.exidx : { *(.ARM.exidx*) } >FLASH
__exidx_end = .;

__etext = ALIGN (4);

.data : { *(.data) } >RAM AT>FLASH
.bss : { *(.bss) } >RAM

© 2024 Arm

T
\

Define memory sizes and
properties.

Define output sections

. is DOT, the location counter

ALIGN is a built-in function

> assigns output section to memory
region that it will execute in (VMA)

>AT assigns output section to memory
region that it will load in (LMA)

arm

GNU Id and LLD linker script handling

-- The GNU linker manual is the closest there is to a specification for linker scripts
. https://sourceware.org/binutils/docs/ld/Scripts.html

-- Some parts are underspecified, some are implementation defined

- Placement of orphan sections.
- Section to segment mapping.
- Alignment in memory regions.

-- GNU |d and LLD are moving targets

- Not all features are implemented in LLD.

-- Sometimes LLD has made a design decision to differ from GNU Id
« https://lld.llvm.org/ELF/linker script.html#linker-script-implementation-notes-and-policy

6 © 2024 Arm a rm

https://sourceware.org/binutils/docs/ld/Scripts.html
https://lld.llvm.org/ELF/linker_script.html#linker-script-implementation-notes-and-policy

arm

Orphan Placement

Input sections that are not specified by the script

8

Orphan sections

-- A linker script does not have to give a complete mapping from input section to output
section.

-- Input sections that do not match any input section description are called “orphan
sections”.

-- Linker is expected to automatically find a place for orphan sections

-- --orphan-handling=[place (default), discard, warn, error] canbe

used to alter policy.
- --orphan-handling=warn will tell you where orphans have been placed.

-- --unique prevents orphan sections with same name from being consolidated.

© 2024 Arm 0 r m

9

Orphans and linker scripts

SECTIONS

{
.text : {*(.text .text*) }
__exidx_start = .;
.ARM.exidx : { *(.ARM.exidx*) }
__exidx_end = .;

d—

<

.data : { *(.data) }

.bss :

I~ a

*(.bss) }
end .

&
<

A

© 2024 Arm

Orphans

.section .executable, “ax”, %progbits

.section .read_only, “a”, %progbits

.section .read_write, “aw”, %progbits

.section .zero_init, “aw”, %nobits

.section .noalloc, “”, %progbits

arm

LLD and GNU |d orphan placement

-- Both use similar examples but there are differences in detail

-- Similarities
- Orphans matching an output section name are assigned to that output section.
+.foo : { *(.bar) } /* Matches orphans with name .foo */
- New output section created for orphans that don’t match by name.

-- Output sections and orphans ranked by property flags
- Read-only, executable ...

-- Orphan placed at the after the last output section with the closest rank.

-- Have to avoid breaking symbol assignments
- start = .; foo : { *(foo) } end = .;
- .foo : { *(.bar); . += 0x1000 ; } /* .foo placed after . expression */

-- Orphans placed after the last output section placed after all trailing commands.

10 © 2024 Arm a r' m

Example difference of orphan placement

SECTIONS { lld
text { *(.text)‘}\ .section .read only, “a”, %progbits
P —
; GNU Id

e Without a read-only output section in the Linker Script LLD ranks before
text and GNU |d after.

* Can be solved by adding at least one output section that contains only
read-only data.

11 © 2024 Arm a r' m

Unallocated sections influence on orphan placement

SECTIONS {
text : { *(.text) } .section .foo, "aw", %progbits
foo : { *(.foo) }
bar : { *(.bar) } .section .bar, “w", %progbits
baz : { *(.baz) } o
.data : { *(.data) } .section .baz, "aw", %progbits
.bss : { *(.bss) }

}

* None of the sections are orphans

 The SHF_ALLOC flag “a” is missing from .bar. This is a common oversight.
 LLD will insert linker generated sections like .comment after output section bar.
* GNU Id will place linker generated sections like .comment at the end.

12 © 2024 Arm a r' m

arm

Program Header
generation

Section to segment mapping

Elf Segments and Alignment

-- Segments are described by ELF program headers of type PT_LOAD.

p_type Type of program header, PT_LOAD in our case.
p_offset Offset in file of program segment.

p_paddr Physical address of segment (ignored for System V)
p_vaddr Virtual address of segment

p_memsz Size in memory of program segment

p_filesz Size in file of program segment

p_align p_vaddr congruent to p_offset (modulo p_align)

14 © 2024 Arm 0 r m

Program Header assighment

-- APT_LOAD program segment is described by an ELF program header

- Contiguous range of bytes in the file with the same properties

-- In a System V Operating-System the ELF file will be memory mapped
- Program segments need to be appropriately aligned.
- Content is contiguous in the file and in memory.
- No difference in virtual and physical address.
- Zero-initialized data must follow non-zero initialized data within segment.

-- In an embedded system the ELF file may not be executed directly
- Program segment contents extracted by a tool like objcopy.
- System may not have virtual memory.
- Virtual and physical address may differ (RW data copied to RAM at startup).
- File contents are contiguous, but memory contents may not be.

15 © 2024 Arm a r' m

Influences on program header assignment

-- VMA to LMA offset of an Output Section

- A single program header can represent many contiguous output sections with the same offset.
- For memory mapped ELF files this is always O
- Can be altered for an output section using AT(offset) or AT> memory_region.

-- Changes in properties such as RO to RW
- Configurable by flags as properties can be merged.

-- Special cases like -zrelro and -zseparate-code

-- Gaps between compatible output sections
- Extend a single program segment to cover both output sections with padding in between.

16 © 2024 Arm a r' m

Simplified layout of an ELF file for a System V AArch64 OS

—

p_offset 0x0
p_vaddr 0x400000
p_memsz Oxe7d0 .
p_align 0x1000

0x400000 64k Page

Text Segment Read-only
execute

p_offset Oxe7d0
p_vaddr 0x41e7d0 Data Segment

p_memsz 0x268
p_align 0x1000

0x410000 64k Page

Read-write —

* p_offset congruenttop vaddr (modulo
palign) permits part of the file to be
mmapped twice.

* DATA_SEGMENT_ALIGN in linker scripts.

* MAP_PRIVATE prevents writing to addresses
in read-only page

e Read-write data can be read and executed.

Read-write —

Virtual Memory

17 © 2024 Arm a r m

-zseparate-code in GNU |d

GNU Id -zseparate-code

Read-only

Read-only
executable

Read-only

Read-write
RELRO

18 © 2024 Arm

Padding to max-page-size

Padding to max-page-size

} Padding to max-page-size

GNU Id -znoseparate-code

Read-only

Read-write

-zseparate-code isolates read-only
executable segment by padding to a max-page-
size boundary.

Executable code cannot execute data as code at
expense of larger files and increased memory
usage. Particularly on systems with large page
sizes.

GNU Id defaults to -zseparate-code, can be
disabled with -zno-separate-code

DATA_SEGMENT_RELRO_END pads to max-page-
size boundary.
arm

-zseparate-code in LLD

d.lld -zseparate-code |d.Ild -znoseparate-code

Read-only Read-only

Padding to max-page-size Read-only

Read-only executable

executable

Padding to max-page-size Read-write

Read-write

RELRO * LLD defaults to -znoseparate-code

 LLD doesn’t sandwich the executable segment
between read-only segments

 DATA SEGMENT_RELRO _END padstoa
common-page-size boundary only.

Padding to common-page-size

19 © 2024 Arm a r' m

Program Segments in embedded systems

MEMORY
{
FLASH (rx) : ORIGIN = ©x0, LENGTH = 0x20000 /* 128K */
RAM (rwx) : ORIGIN = Ox10000000, LENGTH = 0x2000 /* 8K */ >FLASH
} >AT FLASH
SECTIONS
{
.text : {*(.text*) } >FLASH
__exidx_start = .; >RAM
.ARM.exidx : { *(.ARM.exidx*) } >FLASH >AT FLASH
__exidx_end = .;

__etext = ALIGN (4);
.data : { *(.data) } >RAM AT>FLASH
.bss : { *(.bss) } >RAM

} .bss at
runtime \

20 © 2024 Arm a r m

LLD Program Header Generation Known problems

-- LLD address assignment assumes that output sections VMA within a program header

monotonically increase

- Possible to break this assumption using memory regions.

- https://discourse.llvm.org/t/overflow-related-to-program-headers/75150
+second_section (0x10000000 +64) : { KEEP (*(.second _in_section)); } > mem
+first section 0x10000000 : { KEEP (*(.first _in _section)); } > mem

-- GNU |d reorders output sections so that VMA and LMA monotonically increase
- [1] second_section PROGBITS 0000000010000040 001040 00000100 AX 0 0 1
- [2] first_section PROGBITS 0000000010000000 001000 00000100 AX 0 0 1

21 © 2024 Arm a r' m

https://discourse.llvm.org/t/overflow-related-to-program-headers/75150

arm

Miscellaneous
Differences

Symbol assignment differences

-- Dot assignment within an output section
- .section : { *(.text); . = 4; *(.text.*) }
- In GNU Id symbol assignments in an output section are relative to the start of the output section.
- In lld it assigns the location counter to the value, normally provoking an error message.

-- This is also the case for named symbols
- .section : { *(.text); foo = 4; *(.text.*) }
- In GNU |d foo is a section relative symbol with value of .section + 4.
- In lld foo is an absolute symbol defined to 4.

-~ For portability
- Use . += <value> to move the location counter
- Define a symbol at the current location counter foo = .;

23 © 2024 Arm a r' m

arm

References

References

-- MaskRay’s blog posts
« https://maskray.me/blog/2020-11-15-explain-gnu-linker-options
. https://maskray.me/blog/2020-12-19-lld-and-gnu-linker-incompatibilities
« https://maskray.me/blog/2023-12-17-exploring-the-section-layout-in-linker-output

-- GNU documentation
« https://sourceware.org/binutils/docs/ld/Scripts.html

-- LLD documentation
« https://lld.llvm.org/ELF/linker script.html

-- LLVM Bugzilla (archive)
« https://bugs.llvm.org/show bug.cgi?id=42327 Ild and GNU Id orphan handling difference

-- GNU Bugzilla and patch notes

- https://sourceware.org/bugzilla/show bug.cgi?id=28824 relro security issues
-+ Has a good description of max-page-size and common-page-size

25 © 2024 Arm a r m

https://maskray.me/blog/2020-11-15-explain-gnu-linker-options
https://maskray.me/blog/2020-12-19-lld-and-gnu-linker-incompatibilities
https://maskray.me/blog/2023-12-17-exploring-the-section-layout-in-linker-output
https://sourceware.org/binutils/docs/ld/Scripts.html
https://lld.llvm.org/ELF/linker_script.html
https://bugs.llvm.org/show_bug.cgi?id=42327
https://sourceware.org/bugzilla/show_bug.cgi?id=28824

arm

© 2024 Arm

Thank You
Danke
Gracias
Grazie

157 157
HYMED
Asante
Merci

L AL LT

Ygdic
Kiitos
A
SEIGIN]

nNTin
cﬁé5a°c6cbww

arm

Backup

LLD Program Header Generation

-- Create a new program header if next Output Section
- Program header flags are different (read-only, writeable, executable).
- Different memory region (given by > region).
- Different LMA memory region (given by AT> region or AT(address)).
- Previous output section was SHT _NOBITS and this oneis SHT PROGBITS.

-- LLD address assignment assumes that output sections VMA within a program header

monotonically increase
- Possible to break this assumption using memory regions.

 https://discourse.llvm.org/t/overflow-related-to-program-headers/75150
+second_section (0x10000000 +64) : { KEEP (*(.second in _section)); } > mem
+first _section 0x10000000 : { KEEP (*(.first_in_section)); } > mem

-- LLD writes SHT_NOBITS contents to file as O if followed by SHT_PROGBITS

28 © 2024 Arm a r' m

https://discourse.llvm.org/t/overflow-related-to-program-headers/75150

GNU Id and program header creation

-- Output sections are sorted by ascending LMA, then VMA

-- Create a new program header if next Output Section
- VMA to LMA offset is different.
- LMA overlaps with previous section LMA range [LMA, LMA + LMA size).
- Would cause a page to be skipped within the segment.
- If paged, section is writeable and previous section was read-only.

-- GNU |d reorders output sections so that VMA and LMA monotonically increase
- [1] second_section PROGBITS 000000001000004000104000000100 AX 0O 01
- [2] first_section PROGBITS 0000000010000000 001000000001 00 AX O 01

29 © 2024 Arm a r' m

Alignment when VMA = LMA

SECTIONS { VMA
a A

begin = .;

*(.a)

} > VMA REGION AT > LMA REGION

b {

*(.b) Padding
} > VMA REGION AT > LMA REGION

.c : A

*(.c)

end = .;

} > VMA_REGION AT > LMA_REGION

* GNU |d default no LMA alignment

* GNU Id ALIGN_WITH_INPUT uses VMA
alignment padding

Padding

* LLD naturally aligns in LMA

30 © 2024 Arm

GNU Id
LMA

GNU Id LMA LLD LMA

ALIGN_WITH_INPUT naturally aligned

Padding Padding

Padding

Padding

arm

Evaluation

-- GNU |d default produces smallest LMA size, but:

- Requires an individual copy of each OutputSection to VMA.
- Copy cannot assume alignment of source (for example a 16-byte aligned vector copy).

-- GNU Id with align_with_input replicates VMA padding
- Whole memory region can be copied in one go.
- OutputSections not guaranteed to be naturally aligned in LMA.

-- LLD naturally aligns in LMA
- If VMA and LMA not congruent (modulo alignment) then cannot copy whole memory region in one.
- Output sections guaranteed to be naturally aligned.
- Possible to generate large gap

-- All implementation choices reasonable
- Won’t matter much for small alignments
- Users sometimes (ab)use large alignments to place sections, could result in large binaries.
- Could offer an option for |d.bfd alignment, with support for ALIGN_WITH_INPUT

31 © 2024 Arm 0 r m

Alignment of 0 size OutputSections in LMA

-+ https://github.com/llvm/llvm-project/issues/64571

- Source is a zero-sized OutputSection with ALIGN directive
- .output_section : ALIGN(16) { ... }

-- GNU Id does not emit the 0 sized section into LMA, no additional padding

- 0 sized section with lower VMA added to same program header causing negative file offset.

32 © 2024 Arm a r m

https://github.com/llvm/llvm-project/issues/64571
https://github.com/llvm/llvm-project/issues/65159

TLS local exec alignment

Thread
Poiner TP

ELF file contains .tdata and .tbss
e PT_TLS program header for dynamic linking
* Linker defined symbols for embedded systems
Linker and library must agree on size of alignment padding for TLS
* Newlib/picolibc use MAX(2*wordsize , MAX(ALIGNOF(.tdata, ALIGNOF(.tbss))))
 LLD uses more complex expression that saves padding if overaligned .tbss
e s.getVA(O) + config->wordsize * 2 + ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
* Does not match libraries calculation.

Linker defined symbol for TLS padding that library can use if defined?
33 © 2024 Arm arm

	Slide 1: Linker Scripts in LLD and how they compare with GNU ld
	Slide 2: Linker script essentials
	Slide 3: ELF components
	Slide 4: Linker control scripts
	Slide 5: Linker Script Illustrative example
	Slide 6: GNU ld and LLD linker script handling
	Slide 7: Orphan Placement
	Slide 8: Orphan sections
	Slide 9: Orphans and linker scripts
	Slide 10: LLD and GNU ld orphan placement
	Slide 11: Example difference of orphan placement
	Slide 12: Unallocated sections influence on orphan placement
	Slide 13: Program Header generation
	Slide 14: Elf Segments and Alignment
	Slide 15: Program Header assignment
	Slide 16: Influences on program header assignment
	Slide 17: Simplified layout of an ELF file for a System V AArch64 OS
	Slide 18: -zseparate-code in GNU ld
	Slide 19: -zseparate-code in LLD
	Slide 20: Program Segments in embedded systems
	Slide 21: LLD Program Header Generation Known problems
	Slide 22: Miscellaneous Differences
	Slide 23: Symbol assignment differences
	Slide 24: References
	Slide 25: References
	Slide 26
	Slide 27: Backup
	Slide 28: LLD Program Header Generation
	Slide 29: GNU ld and program header creation
	Slide 30: Alignment when VMA != LMA
	Slide 31: Evaluation
	Slide 32: Alignment of 0 size OutputSections in LMA
	Slide 33: TLS local exec alignment

