Building a Web Frontend for Federated
Communication with Brython

Jéréme Poisson (Goffi)

2024-02-04, FOSDEM'24

Libervia

» Universal communication ecosystem

Built on XMPP

» Features: chat, blogging, A/V calls, calendar events, forums,
etc.

» End-to-end encryption (planned for web frontend)

Multi-frontends

» Compatible with ActivityPub

v

v

Why Python in the Browser?

» No context switching

» Quick and easy development
» High code reusability

» Stable Ecosystem

Libervia Web Screenshot

o Session Chat Blog Forums 1ge i Calendar Listes g Calls

Libervia Chat Demo

E Jérdme Poisson, Software Developer
Byow2

Libervia: the Universal Communication Ecosystem Are you looking for a communication solution that
prioritizes privacy, security, and ethics? Introducing Libervia, the versatile ecosystem developed right
here in Europe, built on the XMPP protocol. But Libervia isn't just for instant messaging. With

advanced end-to-end encryption, blogging and mi capabilites, calendar events, file
sharing, photo albums, a ticket system, and even an ActivityPub/XMPP gateway, Libervia is the
perfect ication tool for individuals, institutions, NGOs, and more. Libervia is

constantly evolving, with new features like audio/video calls and desktop sharing being implemented
thanks to a grant from NLnet/NGI Assure with financial support from the European Commission's.
Next Generation Internet program. What sets Libervia apart i its flexibility. With a multi-frontend
approach and a highly customizable web frontend, Libervia adapts to your needs and preferences,
giving you complete control over your online interactions. Whether you're an individual user, a
family, a group of friends, or a school or business looking for secure and reliable communication
tool, Libervia has got you covered

@ Jérome Poisson, Software |
Developer
Jérame Puis
|

Open Source Software and Digital C
June 14-15, 2023, at Chatillon, Pari:

> 8

www.ow2con.

i

B o= &
QY Hee By
— =
o1 (s1)(e) @
£ e 106720232143 BV

This is 2 message g 4

Alternatives

Pyjamas/PyJS

VVvyVYyVVYYVYY

Used until Libervia 0.6

port of GWT to Python
Python-to-JavaScript transpiler
Heavy

Similar to desktop development
Supports Python 2 only
Project is no longer active

Transcrypt

» Python-to-JavaScript transpiler

> Lightweight

» Not fully Python compatible

» No port of standard libraries (use instead JS modules)

Pyodide

CPython ported to WebAssembly
Heavy

Fully compatible with CPython
Supports numerous packages
Notably great for scientific packages

vvyyvyYVvyy

PyScript

» Introduced after Brython was chosen

> Uses WebAssembly, relies on Pyodide or MicroPython

> Offers web integration

» Choice between full Python compatibility (Pyodide, heavier) or
lighter version (MicroPython, less compatible)

P> Seems easier to use then Pyodide

Other

» Skulpt
» similar to Brython
> not yet Python 3
> PyPy.js
» PyPy ported to WebAssembly (emscripten)
> unmaintained

Brython

VVYVYVYVVYVYVYYVYYVYY

Transpiles Python to JavaScript directly in the browser
Caches the transpiled code

Includes a compatibility layer

Real Python, strong compatibility

Up-to-date with Python releases

Most standard libraries are available

Supports pure Python packages

Enables dynamic JS transpilation

Allows calling JavaScript's eval

Facilitates direct use of JS code in Python and vice versa
Welcoming, responsive and supportive community

It's Python, for real!

import antigravity

How the Web Frontend Works

Overview

Overview of the Libervia Architecture

(=)

Libervia Templates

Templates

File Sharing Component

(eria sadend

<
Libervia XMPP <=> ActivityPub Gateway ‘
/

Backend

Communicates with frontends
1PC)

ibervia Ffontends 3
a = =) =]
Desktop cu Mobile Ul

Web

[Fmaro proronpe’

Openfire

[xmPP server\

Prosody ‘

ejabberd ‘

MongooseIM

[Web Frontenfi Details\

HTTP Server

T
= Communicates with the HTTP Server via a WebSocket.

Browser (Brython)

Figure 2: Libervia Architecture Overview

Goals of the Web Frontend

> Progressive enhancement
» Mostly functional in static environments
» Utilizes JavaScript if available
> Ease of development and maintainability
» Code reuse

Templating

VVVYyVYVYYVYY

Jinja2 (Python)

Nunjucks (JS)

Both are mostly compatible

Implements missing filters/directives in Brython
Ensures compatibility with backend templates
Supports easy theming

Templates can be utilized by the CLI frontend:
P static websites
» data formatting

Libervia “Pages”

» Each directory corresponds to an HTML path

P> Page code in page_meta.py includes:
> Name
» Access policy
> Template
» Methods for:
» URL parsing
» Data preparation
» Handling POST requests
» And other things
» Browser-specific code in _browser directory

» Final files hierarchy automatically generated

Code Example

Minimal Page

from libervia.web.server.constants import Const as C

name = "calls"
access = C.PAGES_ACCESS_PROFILE
template = "call/call.html"

Browser Code

import json

from bridge import AsyncBridge as Bridge, BridgeException
from browser import document, aio

import dialog

bridge = Bridge()

on_delete see mext slide

for elt in document.select('.action_delete'):
elt.bind("click", lambda evt: aio.run(on_delete(evt)))

async def on_delete(evt):
evt.stopPropagation()
evt.preventDefault ()
target = evt.currentTarget
item_elt = target.closest('.item')
item_elt.classList.add("selected_for_deletion")
item = json.loads(item_elt.dataset.item)

confirmed = await dialog.Confirm(
f'"List {item['name']!r} will be deleted, are you sure?",
ok_label="delete",

) .ashow()

if not confirmed:
item_elt.classList.remove("selected_for_deletion")
return

try:
await bridge.interest_retract("", item['id'])
except BridgeException as e:
dialog.notification.show(
f"Can't remove list {item['name']!r} from personal interests: {e}",
"error"
)
else:
print(f"{item['name']!r} removed successfuly from list of interests")
deletion effect

Demo Video

./fosdem_2024/list_delete_short.mkv

Debugging

Debugging

» Real Python tracebacks

» Sometimes JS exceptions

» We can use breakpoint and pdb!
» interpreter.Inspector

Performance Considerations

» Same order of magnitude as CPython (according to
documentation)

» Slower than JavaScript due to compilation + compatibility layer
» compiled JS is cached

» brython_stdlib.js is big (~4.5 Mb) but can be reduced or
fully removed

» Loading time (first time, then cache)

> from my experience and use case: absolutely acceptable, and
I've yet to optimize

Roadmap

» Enhance Brython Integration:
» Blog to social network UX evolution.
> Backend Code Reusability:
» Foundation for e2ee.
» Implement Full e2ee On Demand:
» Secure user communication.
> Experiment with Innovative Use of Python in Browser:
» The possibilities are vast: education, science, automation, etc.

Conclusion

Conclusion

Brython stands as a robust solution for integrating Python into web
development. It bridges the gap between backend and frontend,
promoting code reuse and efficiency.

Thank You!

Brython: https://brython.info

Libervia: https://libervia.org

blog: https://www.goffi.org

XMPP room: libervia@chat.jabberfr.org
ActivityPub: @goffi@mastodon.social

vvyyvyy

v

Thank you for attending, happy web hacking with Brython!

	Alternatives
	How the Web Frontend Works
	Code Example
	Debugging
	Conclusion

