
JMAP
the JSON Meta Application Protocol

Getting Started with

okay, funny story

JMAP
the JSON Meta Application Protocol

Getting Started with

I pitched this talk:

JMAP
the JSON Meta Application Protocol

Getting Started with

I pitched this talk:

• what is JMAP?

• how does it work?

• why is it so great?

• how do I get started

• what comes next?

• how does Fm use it?

I made that talk!

I made that talk!
• pppppp pppp

I made that talk!
• pppppp pppp

• ccccccccccccc

I made that talk!
• pppppp pppp

• ccccccccccccc

• nnnnnn nn nnnn nnnn

I made that talk!
• pppppp pppp

• ccccccccccccc

• nnnnnn nn nnnn nnnn

• tttt t ttttttttttt

I made that talk!
• pretty good

• comprehensive

• nearly an hour long

• then I remembered…

 15m slot! PDF only, no Keynote!

so, I present…

JMAP
the absolute minimum.pdf

if you want to hear the
whole thing,

it can be arranged

if you want to hear the
whole thing,

it can be arranged

Ricardo Signes
rjbs

making email better

📧 email, calendars, and contacts

🦘 in Melbourne, AU

🥨 and Philadelphia, US

💙 we really love email

but first, IMAP

 (connection established)
S * OK IMAP4rev1 Service Ready
C a001 login mrc secret
S a001 OK LOGIN completed
C a002 select inbox
S * 18 EXISTS
S * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
S * 2 RECENT
S * OK [UNSEEN 17] Message 17 is the first unseen message
S * OK [UIDVALIDITY 3857529045] UIDs valid
S a002 OK [READ-WRITE] SELECT completed

command tag
unsolicited

response

response code

list

 (connection established)
S * OK IMAP4rev1 Service Ready
C a001 login mrc secret
S a001 OK LOGIN completed
C a002 select inbox
S * 18 EXISTS
S * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
S * 2 RECENT
S * OK [UNSEEN 17] Message 17 is the first unseen message
S * OK [UIDVALIDITY 3857529045] UIDs valid
S a002 OK [READ-WRITE] SELECT completed

(to say nothing of the payload)

Received: from mailmx.nyi.internal (localhost [127.0.0.1])
 by mx2.messagingengine.com (Authentication Milter) with ESMTP
 id 6E4A997388F.0E48A6A00C2;
 Thu, 25 Jan 2024 04:30:29 -0500
ARC-Seal: i=4; a=rsa-sha256; cv=pass; d=messagingengine.com; s=fm3; t=
 1706175029; b=hs+FUbwu+LcAUex9jy5wTnAL0SkZDfeFW9HlCmIGk4wdNsV6ZW
 4/HaLPUxFq7Auhg4Insp7Ocl7WVhQuhoftIwdm5zUSvsrFniB+RM5qxoesH0RKKY
 g43DZZTIeg4iSyj+Ipwi5dHB4/1595CmPBjrm0toGGjfg+YVC/Desew0kBKh4ulU
 V1IfLXCjLki8xJEy/DjLI+osVes4KUW5AlrFWAl+hPKOd1IVPsn05szc9uaiQOt9
 nibH4oDfECCruYrFEFH6MRU8d3rPaRQh1K7EQVdf6KmA4ZlU2NZF8TknFUefrql+
 /9rdrw1aYocMXnSFfxOrCxOKdc+iC/QO6tHw==
X-Received-x-me-csa: (Received x-me-csa header removed by
 mx2.messagingengine.com) none

------=_NextPart_000_0446_01DA4F79.5FD0FDA0
Content-Type: multipart/alternative;
 boundary="----=_NextPart_001_0447_01DA4F79.5FD0FDA0"
Content-Transfer-Encoding: 7bit
Content-ID: <17061750230.cBcEFDe57.528484@tb-mx1>

------=_NextPart_001_0447_01DA4F79.5FD0FDA0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

whatever you want to say
about HTTP+JSON

at least it isn't that

You probably all know
how to use HTTP

You probably all know
how to use HTTP

even if you don't know
how it works

You probably all know
how to use HTTP

even if you don't know
how it works

and you probably do
know how it works.

omitted here:
lots of slides about how

weird IMAP is

C a004 fetch 12 body[header]
S * 12 FETCH (BODY[HEADER] {342}
S Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
S From: Terry Gray <gray@cac.washington.edu>
S Subject: IMAP4rev1 WG mtg summary and minutes
S To: imap@cac.washington.edu
S cc: minutes@CNRI.Reston.VA.US, John Klensin <KLENSIN@MIT.EDU>
S Message-Id: <B27397-0100000@cac.washington.edu>
S MIME-Version: 1.0
S Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
S
S)
S a004 OK FETCH completed
C a005 store 12 +flags \deleted
S * 12 FETCH (FLAGS (\Seen \Deleted))
S a005 OK +FLAGS completed

C a004 fetch 12 body[header]
S * 12 FETCH (BODY[HEADER] {342}
S Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
S From: Terry Gray <gray@cac.washington.edu>
S Subject: IMAP4rev1 WG mtg summary and minutes
S To: imap@cac.washington.edu
S cc: minutes@CNRI.Reston.VA.US, John Klensin <KLENSIN@MIT.EDU>
S Message-Id: <B27397-0100000@cac.washington.edu>
S MIME-Version: 1.0
S Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
S
S)
S a004 OK FETCH completed
C a005 store 12 +flags \deleted
S * 12 FETCH (FLAGS (\Seen \Deleted))
S a005 OK +FLAGS completed

C a004 fetch 12 body[header]
S * 12 FETCH (BODY[HEADER] {342}
S Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
S From: Terry Gray <gray@cac.washington.edu>
S Subject: IMAP4rev1 WG mtg summary and minutes
S To: imap@cac.washington.edu
S cc: minutes@CNRI.Reston.VA.US, John Klensin <KLENSIN@MIT.EDU>
S Message-Id: <B27397-0100000@cac.washington.edu>
S MIME-Version: 1.0
S Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
S
S)
S a004 OK FETCH completed
C a005 store 12 +flags \deleted
S * 12 FETCH (FLAGS (\Seen \Deleted))
S a005 OK +FLAGS completed

sent store, got fetch!

IMAP is a cache
management protocol

imap
server

client
(cache)

imap
server

client
(cache)

fetch
update
create
delete

{

imap
server

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

 * 13 FETCH …
 * 14 FETCH …

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

 * 13 FETCH …
 * 14 FETCH …

Update your
cache.

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

 * 13 FETCH …
 * 14 FETCH …

Update your
cache.

I want to mark
this read.

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

 * 13 FETCH …
 * 14 FETCH …

Update your
cache.

I want to mark
this read.

STORE 12
 +FLAGS \Seen

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

 * 13 FETCH …
 * 14 FETCH …

Update your
cache.

I want to mark
this read.

STORE 12
 +FLAGS \Seen * 12 FETCH …

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

imap
server

client means client
sends

server replies server means

I want to work
with the inbox.

SELECT
 INBOX

 172 EXISTS
 FLAGS (…)

Prep a cache.
Here's how.

I want to see
new mail.

FETCH 12:*
 ENVELOPE

 * 13 FETCH …
 * 14 FETCH …

Update your
cache.

I want to mark
this read.

STORE 12
 +FLAGS \Seen * 12 FETCH …

Update your
cache.

client
(cache)

fetch
update
create
delete

{
update cache
invalidate cache}

C A03 SELECT INBOX (QRESYNC (67890007 123 41,43:211,214:541))
S * OK [CLOSED]
S * 314 EXISTS
S * 15 RECENT
S * OK [UIDVALIDITY 67890007] UIDVALIDITY
S * OK [UIDNEXT 567] Predicted next UID
S * OK [HIGHESTMODSEQ 130]
S * OK [UNSEEN 7] There are some unseen messages in the mailbox
S * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
S * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
S * VANISHED (EARLIER) 41,43:116,118,120:211,214:540
S * 49 FETCH (UID 117 FLAGS (\Seen \Answered) MODSEQ (128))
S * 50 FETCH (UID 119 FLAGS (\Draft $MDNSent) MODSEQ (129))
S ...
S * 100 FETCH (UID 541 FLAGS (\Seen $Forwarded) MODSEQ (130))
S A03 OK [READ-WRITE] mailbox selected

C A03 SELECT INBOX (QRESYNC (67890007 123 41,43:211,214:541))
S * OK [CLOSED]
S * 314 EXISTS
S * 15 RECENT
S * OK [UIDVALIDITY 67890007] UIDVALIDITY
S * OK [UIDNEXT 567] Predicted next UID
S * OK [HIGHESTMODSEQ 130]
S * OK [UNSEEN 7] There are some unseen messages in the mailbox
S * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
S * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
S * VANISHED (EARLIER) 41,43:116,118,120:211,214:540
S * 49 FETCH (UID 117 FLAGS (\Seen \Answered) MODSEQ (128))
S * 50 FETCH (UID 119 FLAGS (\Draft $MDNSent) MODSEQ (129))
S ...
S * 100 FETCH (UID 541 FLAGS (\Seen $Forwarded) MODSEQ (130))
S A03 OK [READ-WRITE] mailbox selected

resync

client state

C A03 SELECT INBOX (QRESYNC (67890007 123 41,43:211,214:541))
S * OK [CLOSED]
S * 314 EXISTS
S * 15 RECENT
S * OK [UIDVALIDITY 67890007] UIDVALIDITY
S * OK [UIDNEXT 567] Predicted next UID
S * OK [HIGHESTMODSEQ 130]
S * OK [UNSEEN 7] There are some unseen messages in the mailbox
S * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
S * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
S * VANISHED (EARLIER) 41,43:116,118,120:211,214:540
S * 49 FETCH (UID 117 FLAGS (\Seen \Answered) MODSEQ (128))
S * 50 FETCH (UID 119 FLAGS (\Draft $MDNSent) MODSEQ (129))
S ...
S * 100 FETCH (UID 541 FLAGS (\Seen $Forwarded) MODSEQ (130))
S A03 OK [READ-WRITE] mailbox selected

resync

client state

server state

C A03 SELECT INBOX (QRESYNC (67890007 123 41,43:211,214:541))
S * OK [CLOSED]
S * 314 EXISTS
S * 15 RECENT
S * OK [UIDVALIDITY 67890007] UIDVALIDITY
S * OK [UIDNEXT 567] Predicted next UID
S * OK [HIGHESTMODSEQ 130]
S * OK [UNSEEN 7] There are some unseen messages in the mailbox
S * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
S * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
S * VANISHED (EARLIER) 41,43:116,118,120:211,214:540
S * 49 FETCH (UID 117 FLAGS (\Seen \Answered) MODSEQ (128))
S * 50 FETCH (UID 119 FLAGS (\Draft $MDNSent) MODSEQ (129))
S ...
S * 100 FETCH (UID 541 FLAGS (\Seen $Forwarded) MODSEQ (130))
S A03 OK [READ-WRITE] mailbox selected

resync

client state

server state

object state

C A03 SELECT INBOX (QRESYNC (67890007 123 41,43:211,214:541))
S * OK [CLOSED]
S * 314 EXISTS
S * 15 RECENT
S * OK [UIDVALIDITY 67890007] UIDVALIDITY
S * OK [UIDNEXT 567] Predicted next UID
S * OK [HIGHESTMODSEQ 130]
S * OK [UNSEEN 7] There are some unseen messages in the mailbox
S * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
S * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
S * VANISHED (EARLIER) 41,43:116,118,120:211,214:540
S * 49 FETCH (UID 117 FLAGS (\Seen \Answered) MODSEQ (128))
S * 50 FETCH (UID 119 FLAGS (\Draft $MDNSent) MODSEQ (129))
S ...
S * 100 FETCH (UID 541 FLAGS (\Seen $Forwarded) MODSEQ (130))
S A03 OK [READ-WRITE] mailbox selected

resync

client state

server state

object state

C A03 SELECT INBOX (QRESYNC (67890007 123 41,43:211,214:541))
S * OK [CLOSED]
S * 314 EXISTS
S * 15 RECENT
S * OK [UIDVALIDITY 67890007] UIDVALIDITY
S * OK [UIDNEXT 567] Predicted next UID
S * OK [HIGHESTMODSEQ 130]
S * OK [UNSEEN 7] There are some unseen messages in the mailbox
S * FLAGS (\Answered \Flagged \Draft \Deleted \Seen)
S * OK [PERMANENTFLAGS (\Answered \Flagged \Draft \Deleted \Seen *)]
S * VANISHED (EARLIER) 41,43:116,118,120:211,214:540
S * 49 FETCH (UID 117 FLAGS (\Seen \Answered) MODSEQ (128))
S * 50 FETCH (UID 119 FLAGS (\Draft $MDNSent) MODSEQ (129))
S ...
S * 100 FETCH (UID 541 FLAGS (\Seen $Forwarded) MODSEQ (130))
S A03 OK [READ-WRITE] mailbox selected

C Give me updates to inbox since 123.
S Here are many updates. Apply these
 and you will be at 130.

resync

Now you understand IMAP!

Now you understand IMAP!
So, who wants to implement it?

Right!

The good stuff is good,
but the bad stuff is

a total buzzkill.

👍 Good 👎 Bad

can re-sync

👍 Good 👎 Bad

can re-sync

👍 Good 👎 Bad

domain-specific model

can re-sync

👍 Good 👎 Bad

horrible data format

domain-specific model

can re-sync

👍 Good 👎 Bad

horrible data format

weird-o transport layerdomain-specific model

can re-sync

👍 Good 👎 Bad

horrible data format

weird-o transport layer

no (or awful) commodity code

domain-specific model

can re-sync

👍 Good 👎 Bad

horrible data format

weird-o transport layer

no (or awful) commodity code

key features not in core

domain-specific model

can re-sync

👍 Good 👎 Bad

horrible data format

weird-o transport layer

no (or awful) commodity code

key features not in core

domain-specific model

too many (s

JMAP
JSON Meta Application Protocol

POST /jmap HTTP/1.1
Host: api.fastmail.com
Content-Type: application/json

{
 ...
 "Email/get",
 { "ids": ["1", "2", "3"] },
 ...
}

request

Content-Type: application/json

{ ...
 "Email/get",
 { ...
 "list": [
 { ...
 "id": "1",
 "subject": "Hi, Brussels! 🇧🇪💙",
 }
],
 }, ...
}

response

{  
 "id": "Mf713f8ce8838c8fb1176ad98",  
 "messageId": ["GBSALNHAGWNZBAVAWIFONB@signes.online"],  
 "blobId": "Gf713f8ce8838c8fb1176ad98e8c7adfc383b1eb2",  
 "sentAt": "2020-09-23T21:50:06-08:00",  
 "bodyValues": {  
 "1": {  
 "value": "Hi Rik, it's your mother...\n"  
 }  
 },  
 "bodyStructure": {  
 "type": "multipart/alternative"  
 },  
 "header:to:asAddresses": [ 
 {  
 "email": "rjbs@rjbs.cloud",  
 "name": "Ricardo Signes"  
 }  
],  
 "replyTo": [ 
 {  
 "email": "xwcznsl@domainsmadeeasy.com",  
 "name": "DOMAIN REGISTRAR"  
 }  
]  
}

response

{  
 "id": "Mf713f8ce8838c8fb1176ad98",  
 "messageId": ["GBSALNHAGWNZBAVAWIFONB@signes.online"],  
 "blobId": "Gf713f8ce8838c8fb1176ad98e8c7adfc383b1eb2",  
 "sentAt": "2020-09-23T21:50:06-08:00",  
 "bodyValues": {  
 "1": {  
 "value": "Hi Rik, it's your mother...\n"  
 }  
 },  
 "bodyStructure": {  
 "type": "multipart/alternative"  
 },  
 "header:to:asAddresses": [ 
 {  
 "email": "rjbs@rjbs.cloud",  
 "name": "Ricardo Signes"  
 }  
],  
 "replyTo": [ 
 {  
 "email": "xwcznsl@domainsmadeeasy.com",  
 "name": "DOMAIN REGISTRAR"  
 }  
]  
}

sane date format!

response

You could stop here.

You could stop here.

Let's keep going!

{ ...
 "Email/get",
 { ...
 "state": "616",
 "list": [
 { ...
 "id": "1",
 "subject": "Hi, Brussels! 🇧🇪💙",
 }
],
 }, ...
}

response

{ ...
 "Email/changes",
 { ...
 "sinceState": "616",
 }, ...
}

request

{ ...
 "Email/changes",
 { ...
 "sinceState": "616",
 }, ...
}

request

{ ...
 "Email/changes",
 { ...
 "oldState": "616",
 "newState": "717",
 "created": ["a", "b"],
 "updated": ["c"],
 "destroyed": []
 }, ...
}

response

{ ...
 "Email/query",
 { ...
 "filter": [
 { ...
 "hasKeyword": "$flagged",
 "from": "rjbs",
 }
],
 }, ...
}

request

{ ...
 "Email/query",
 { ...
 "ids": ["4", "8", "15", "16"]
 }, ...
}

response

{ ...
 "Email/query",
 { ...
 "ids": ["4", "8", "15", "16"]
 }, ...
}

response

{ ...
 "Email/get",
 { ...
 "ids": ["4", "8", "15", "16"]
 }, ...
}

request

Brace yourself,
we need to look at

more IMAP.

C a001 SEARCH FLAGGED FROM "rjbs"
S * SEARCH 2 84 882
S a001 OK SEARCH completed
C a002 FETCH 2,84,882 FULL
S * (lots of stuff)

C a001 SEARCH FLAGGED FROM "rjbs"
 [waiting]
S * SEARCH 2 84 882
S a001 OK SEARCH completed
C a002 FETCH 2,84,882 FULL
 [waiting]
S * (lots of stuff)

{ ...
 "Email/query",
 { ...
 "ids": ["4", "8", "15", "16"]
 }, ...
}

response

{ ...
 "Email/get",
 { ...
 "ids": ["4", "8", "15", "16"]
 }, ...
}

request

Request 1: Email/query (filter)
Response 1: Email/query (1,2,3)
Request 2: Email/get (1,2,3)
Response 2: Email/get (1,2,3)

Request 1: Email/query (filter)
 [waiting]
Response 1: Email/query (1,2,3)
Request 2: Email/get (1,2,3)
 [waiting]
Response 2: Email/get (1,2,3)

{ ...
 ["Email/query",
 { "filter": [...], ... },
 "a",
],
 ["Email/get",
 { "#ids": { "resultOf": "a",
 "name": "Email/query",
 "path": "/ids" },
 "b",
],
}

request

{ ...
 ["Email/query",
 { "filter": [...], ... },
 "a",
],
 ["Email/get",
 { "#ids": { "resultOf": "a",
 "name": "Email/query",
 "path": "/ids" },
 "b",
],
}

Request

{ ...
 ["Email/query",
 { "filter": [...], ... },
 "a",
],
 ["Email/get",
 { "#ids": { "resultOf": "a",
 "name": "Email/query",
 "path": "/ids" },
 "b",
],
}

Request

Request 1: a: Email/query (filter)
 b: Email/get (&a)
 [waiting]
Response 1: a: Email/query (1,2,3)
 b: Email/get (1,2,3)

just a couple more things

{
 "using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
],
 "methodCalls": [
 [
 "Mailbox/query",
 {
 "filter" : { "role": "inbox" },
 "accountId": "rjbs@fastmailteam.com"
 },
 "r1"
],
 [
 "Mailbox/get",
 {
 "accountId": "rjbs@fastmailteam.com",
 "properties": ["unreadThreads"],
 "#ids": { "name": "Mailbox/query", "resultOf": "r1", "path": "/ids" }
 },
 "r2"
]
]
}

request

{
 "using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
],
 "methodCalls": [
 [
 "Mailbox/query",
 {
 "filter" : { "role": "inbox" },
 "accountId": "rjbs@fastmailteam.com"
 },
 "r1"
],
 [
 "Mailbox/get",
 {
 "accountId": "rjbs@fastmailteam.com",
 "properties": ["unreadThreads"],
 "#ids": { "name": "Mailbox/query", "resultOf": "r1", "path": "/ids" }
 },
 "r2"
]
]
}

request

{
 "using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
],
 "methodCalls": [
 [
 "Mailbox/query",
 {
 "filter" : { "role": "inbox" },
 "accountId": "rjbs@fastmailteam.com"
 },
 "r1"
],
 [
 "Mailbox/get",
 {
 "accountId": "rjbs@fastmailteam.com",
 "properties": ["unreadThreads"],
 "#ids": { "name": "Mailbox/query", "resultOf": "r1", "path": "/ids" }
 },
 "r2"
]
]
}

which APIs, and what version

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
]

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars"
]

{
 "using": [...],
 "methodCalls": [
 ["Mailbox/changes", ...],
 ["Mailbox/get", ...],
 ["Email/changes", ...],
 ["Email/get", ...],
 ["Contact/changes", ...],
 ["Contact/get", ...],
 ["CalendarEvent/changes", ...],
 ["CalendarEvent/get", ...],
]
}

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters Preferences

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters CredentialsPreferences

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters
DNS

CredentialsPreferences

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters
FilesDNS

CredentialsPreferences

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters
Billing FilesDNS

CredentialsPreferences

"using": [
 "urn:ietf:params:jmap:core",
 "urn:ietf:params:jmap:mail",
 "https://cyrusimap.org/ns/jmap/contacts",
 "https://cyrusimap.org/ns/jmap/calendars",
 "https://marcolini.com/jmap/chocolat"
]

Filters
Billing FilesDNS

CredentialsPreferences

…and a ton more

oh and also

GET /jmap/events HTTP/1.1

GET /jmap/events HTTP/1.1

event: state
data: {"Email": "818"}

GET /jmap/events HTTP/1.1

event: state
data: {"Email": "818"}

event: state
data: {"Email":"820", "Contact":"412"}

GET /jmap/events HTTP/1.1

event: state
data: {"Email": "818"}

event: state
data: {"Email":"820", "Contact":"412"}

event: state
data: {"Email":"833", "News": "69012"}

also, RFC 8030

aka Web Push

can re-sync

👍 Good 👎 Bad

horrible data format

weird-o transport layer

no (or awful) commodity code

key features not in core

domain-specific model

too many (s

can re-sync

👍 Good 👎 Bad

domain-specific model

ubiquitous data format
standard transport layer

avoids round trips
one protocol, many jobs

real-time sync!

horrible data format

weird-o transport layer

no (or awful) commodity code
key features not in core

too many (s

can re-sync

👍 Good 👎 Bad

domain-specific model

ubiquitous data format
standard transport layer

avoids round trips
one protocol, many jobs

real-time sync!

horrible data format

weird-o transport layer

no (or awful) commodity code
key features not in core

too many (s
not much adoption yet

can re-sync

👍 Good 👎 Bad

domain-specific model

ubiquitous data format
standard transport layer

avoids round trips
one protocol, many jobs

real-time sync!

horrible data format

weird-o transport layer

no (or awful) commodity code
key features not in core

too many (s
not much adoption yet

too many {s and "s

okay, what now?

first, read some simple
code, which you can't run,

just to get a look at it:
https://github.com/fastmail/JMAP-Samples

…then…

TIME TO
READ SOME RFCS!

wait, it's gonna be okay!

how to enjoy the specs

how to enjoy the specs

• first, get a basic sense of how the core
methods in RFC 8620 work

how to enjoy the specs

• first, get a basic sense of how the core
methods in RFC 8620 work

• that is: how to /get, how to /set, how to /query

how to enjoy the specs

• first, get a basic sense of how the core
methods in RFC 8620 work

• that is: how to /get, how to /set, how to /query

• then learn the specific properties and quirks of
specific data types: Mailbox, Email, &c.

RFC 8620
• request basics

• five value types

• */get

• */set

• */changes

• */query

• */queryChanges

• blobs

• push subscriptions

• event source

…but no syncable data types…

RFC 8621

• Mailbox/*

• Thread/*

• Email/*

• SearchSnippet/*

• Identity/*

• EmailSubmission/*

• VacationResponse/*

some RFC highlights
this is not an elaborate prank

Email/*

the "only" complicated part

[
 "Email/get",
 {
 "ids": ["e1", "e2", "e3"],
 "properties": [
 "from", "to", "subject",
 "preview",
 "mailboxIds",
]
 },
 "a",
]

request

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 "to": [{ "name": "Rik", "em...
 "from": [{ "name": "Neil", ...
 "subject": "Enjoy Belgium!",
 "preview": "Don't forget to ...
 "mailboxIds": { "m1": true },
 }
]
 },
 "a",
]

response

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 "to": [{ "name": "Rik", "em...
 "from": [{ "name": "Neil", ...
 "subject": "Enjoy Belgium!",
 "preview": "Don't forget to ...
 "mailboxIds": { "m1": true },
 }
]
 },
 "a",
]

response

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 "to": [{ "name": "Rik", "em...
 "from": [{ "name": "Neil", ...
 "subject": "Enjoy Belgium!",
 "preview": "Don't forget to ...
 "mailboxIds": { "m1": true },
 }
]
 },
 "a",
]

response

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 "to": [{ "name": "Rik", "em...
 "from": [{ "name": "Neil", ...
 "subject": "Enjoy Belgium!",
 "preview": "Don't forget to ...
 "mailboxIds": { "m1": true },
 }
]
 },
 "a",
]

response

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 "to": [{ "name": "Rik", "em...
 "from": [{ "name": "Neil", ...
 "subject": "Enjoy Belgium!",
 "preview": "Don't forget to ...
 "mailboxIds": { "m1": true },
 }
]
 },
 "a",
]

response

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 ...
 "mailboxIds": {
 "m1": true,
 "m2": true
 },
 }
]
 },
 "a",
]

response

[
 "Email/get",
 {
 "list": [
 { "id": "e1",
 ...
 "mailboxIds": {
 "m1": true,
 "m2": true
 },
 }
]
 },
 "a",
]

response

Ask Rik
about "labels
mode" later!

Email headers
"properties": [
 "subject",
 "header:subject",
]

request

response

RFC 8621 § 4.1.2

Email headers
"properties": [
 "subject",
 "header:subject",
]

{ "id": "eX",
 "subject": "🇧🇪🧇",
 "header:subject": " =?UTF-8?…
]

request

response

RFC 8621 § 4.1.2

Email headers
RFC 8621 § 4.1.2

Email headers

"properties": [

RFC 8621 § 4.1.2

Email headers

"properties": [
 "subject",

RFC 8621 § 4.1.2

Email headers

"properties": [
 "subject",
 "header:subject",

RFC 8621 § 4.1.2

Email headers

"properties": [
 "subject",
 "header:subject",
 "header:subject:all",

RFC 8621 § 4.1.2

Email headers

"properties": [
 "subject",
 "header:subject",
 "header:subject:all",
 "header:subject:asText"

RFC 8621 § 4.1.2

Email headers

"properties": [
 "subject",
 "header:subject",
 "header:subject:all",
 "header:subject:asText"
 "header:subject:asText:all"

RFC 8621 § 4.1.2

Email headers

"properties": [
 "subject",
 "header:subject",
 "header:subject:all",
 "header:subject:asText"
 "header:subject:asText:all"
]

RFC 8621 § 4.1.2

Email body
"Email/get", { ...,
 "properties": [
 "blobId",
 "textBody",
 "htmlBody",
 "bodyValues"
],
 ...

RFC 8621 § 4.1.4

Email body
"Email/get", { ...,
 "properties": [
 "blobId",
 "textBody",
 "htmlBody",
 "bodyValues"
],
 ...

RFC 8621 § 4.1.4

Email body
"Email/get", { ...,
 "properties": [
 "blobId",
 "textBody",
 "htmlBody",
 "bodyValues"
],
 ...

RFC 8621 § 4.1.4

This way lies MIME parsing!!

Email body
"Email/get", { ...,
 "properties": [
 "blobId",
 "textBody",
 "htmlBody",
 "bodyValues"
],
 "fetchTextBodyValues": true,
 "fetchHtmlBodyValues": true,
 ...

RFC 8621 § 4.1.4

{
 "bodyValues": {
 "1": {
 "value": "It's me, hi, I'm the body,...
 }, ...
 },
 "textBody": [{ "partId": "1", ... }, ...]
}

JMAP makes the server
be smart so the client can

be stupid.

I know, you're sold!

How can you JMAP?

Lots of ways!

Lots of ways!
Ask for more

later!

Fastest is to use JMAP on
your Fastmail account.

https://fastmail.com/for-developers/

Learn more about how
in our JMAP howto.

jmap.topicbox.com

way cool group email written using JMAP

Thank you!

