Al for Developers

Treating Open Source AI as a Function

Martin Hickey
IBM Deve l.O per Senior Technical Staff Member (STSM)

whoami

» 25+ yrtech career in enterprise and open source
software

¢ Helm core maintainer and TOC member
» Contributor to Kubernetes and Open Telemetry

* Open source developer at IBM

Al as a Function / Februrary 2024 @mh iC keybot

Agenda

Al as a Function / Februrary 2024 Photo by pongo - CC BY-NC 2.0 @m h 1C keybot 3

AI Background

Al as a Function / Februrary 2024

What 1s an AI Model?

An Al model is a program that has been trained on a set of data

to recognize

alin €

ecisions

certain patterns or make certain ¢
without further human intervention.

Al as a Function / Februrary 2024

Models apply different algorithms to relevant data

inputs to achieve the tasks, or output, they’ve
been programmed for.

Source: https://www.ibm.com/topics/ai-model

@mbhickeybot

Model Journey

-

— Model Building/ Prototyping: werp AN 14 T nel, 220= U
* Data: S LA PO\ o et b X P—

— Loading

— Preparing

Algorithm

Training

Validation

— Hosting/ Serving

— Inference

|‘> ’-;

Al as a Function / Februrary 2024

Image by mikemacmarketing - cCBY 2.0 (@mhickeybot

http://www.vpnsrus.com/

Generative AI

— Foundation models:
 Trained on large unlabeled datasets
» Tuned for different tasks

— Large Language Models (LLMs):

» General-purpose language
understanding and generation

— Generative Al
» Uses deep-learning models

» Generates high-quality text, images, and
other content

* Based on the data the model was trained
on

Al as a Function / Februrary 2024

IoT Chemistry

1 : Foundation Model TaskB
Time Series SAAAAG 7 Sas Digital
and Tabular Interactions
Data
(manufacturing,
utilities, financial
ServICes transachons,
network
management...)
Natural Programming
Language Languages

Image: IBM

@mhickeybot

Open Source AI Frameworks

Al as a Function / Februrary 2024

Models 469,541 @&

Licenses Other

Tasks Libraries
.
Q Filter Tasks by name
U n a e meta-1lama/Llama-2-70b
I ‘ ext Gen + Updated 4 i
7 Textto-Image Image-to-Text
stabilityai/stable-diffusion-x1-base-0.9
Text-to-Video Visual Question Answering ted6 .y
Document Question Answering Graph Machine Learning
openchat/openchat
t Generat fat . X}

& Depth Estimation Image Classification

11lyasviel/ControlNet-v1-1

Jpdated Apr

Image Segmentation

— AI community based around open source:

£5 Object Detection

Image-to-Image Unconditional Image Generation

Video Classification & Zero-Shot Image Classification
cerspense/zeroscope_v2_XL
" .

e Libraries

Natui Processing

* Models
[
he AI Co m m u n Ity Text Classification Token Classification
I meta-1lama/L1ama-2-13b
Table Question Answering Question Answering xt Generation » Updated 4 - X]

* Data set
i ° °
EXpanSIVe Catalog Of Open sou rce AI bu I ld I n th e futu re % Zero-Shot Classification Translation
mode lS g [S e oAl tiivae/falcon-46b-instruct
Text Generation « Updat Ja . ko w
Hosted AI model service i
The platform where the machine learning community

Text Generation

&8 Sentence Similary WizardLW/WizardCoder-158-V1,0
Text Generation « Updated 3 da) .

collaborates on models, datasets, and applications. gy
Text-to-Speech & Automatic Speech Recognition ConpVis/stable-diffusion-vi-4
Audio-to-Audio Audio Classification Text-to-Image « Updated about L
Voice Activity Detection
stabilityai/stable-diffusion-2-1
odat t1 .y

p Text-to-Imaj da

Tabular

Tabular Classification Tabular Regression

Salesforce/xgen-7b-8k-inst
ement Learning Text Generation s tad 4 da 5

Reinforcement Learning Robotics

Image: https://huggingface.co

Al as a Function / Februrary 2024

HuggingFace:
Example

— Function:
+ Translate English to French
— Uses:
« T5 Small model for translation

* HuggingFace transformers API for
loading and inference of the model

— Load and inference the model:

* $ python model.py

Al as a Function / Februrary 2024

File name: model.py
from transformers import pipeline

class Translator:
def __init_ (self):
Load model
self.model = pipeline("translation_en_to_fr", model="t5-small")

def translate(self, text: str) -> str:
Run inference
model_output = self.model(text)

Post-process output to return only the translation text
translation = model_output[0] ["translation_text"]

return translation

translator = Translator()

translation = translator.translate("Hello world!")
print(translation)

Source:
https://docs.ray.io/en/latest/serve/getting_started.html @mhickeybot °

Ray

— Unified framework for scaling AI and running distributed Python
workloads

— Consists of three layers:

* Runtime: Python, domain-specific set of libraries that provide a
scalable and unified toolkit for ML applications

» Core: Python library to scale Python applications and accelerate
machine learning workloads

* Cluster: Set of worker nodes connected to a common Ray head
node for running applications

Image:
https://docs.ray.io/en/latest/ray-overview/index.html

Al as a Function / Februrary 2024 @mh iC keybot 11

Ray: Example

— Wrap model code as follows:
* Python decorator serve.deployment:

— Converts Python class to a Ray Serve Deployment
object

» Pass parameters in the serve.deployment decorator

» __call__ method is called on a HTTP request

— Serve the model as HTTP sever using “serve run’ command:

* $ serve run serve_quickstart:translator_app

— Inference the model using following Python client code:

import requests
english text = "Hello world!"

response = requests.post("http://127.0.0.1:8000/",
json=english text)

french_text = response.text

print(french_text)

Al as a Function / Februrary 2024

File name: serve_quickstart.py
from starlette.requests import Request

import ray
from ray import serve

from transformers import pipeline

@serve.deployment (num_replicas=2, ray_actor_options={"num_cpus":
class Translator:
def __init_ (self):
Load model

0.2, "num_gpus": 0

self.model = pipeline("translation_en_to_fr", model="t5-small")

def translate(self, text: str) —> str:
Run inference
model_output = self.model(text)

Post-process output to return only the translation text
translation = model_output[0] ["translation_text"]

return translation
async def __call__(self, http_request: Request) -> str:

english_text: str = await http_request.json()
return self.translate(english_text)

translator_app = Translator.bind()

Source: https://docs.ray.io/en/latest/serve/getting_started.html
@mhickeybot ~

Triton Inference Server

— Streamlines Al inferencing

— Multiple deep learning and machine learning frameworks supported
like:

* TensorRT, TensorFlow, PyTorch, ONNX, Python, etc.
— Supports inference across:
* cloud, data center, edge and embedded devices

— Processor support:
* NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia

Image:
https://developer.nvidia.com/triton-inference-server

Al as a Function / Februrary 2024

@mhickeybot

200

Triton IS: Example (1) [

— Wrap model as follows:
 TritonPythonModel class name is mandatory

 execute function is called on HTTP request

. 14
Al as a Function / Februrary 2024 Source: https://www.inferless.com/learn/nvidia-triton-inference-inferless @ mhicke Y bot

Triton IS: Example (2)

DacKena:
input [
{

— Bootstrap for model serving: name :
aata

+ Config file named config.pbtxt:

— Describes the model input/output, name, backend

* Model directory as follows:

group [

KIND_GPU

Source: https://www.inferless.com/learn/nvidia-triton-inference-inferless @mh iC keybot 1

Al as a Function / Februrary 2024

Triton IS: Example (3)

— Serve the model as follows:
* Run the Triton Inference Server container: --location -~reques 1ttp: / /<« v2/models/transtate/infer' \

» Add the model directory to the Triton Inference
Server container

* Start the Triton HTTP server (in the container):

— Inference the model with HTTP request to the server

Al as a Function / Februrary 2024

. 16
Source: https://www.inferless.com/learn/nvidia-triton-inference-inferless @Mh1ckeybot

Demo

Al as a Function / Februrary 2024

17

In Conclusion

Al as a Function / Februrary 2024

18

Final Thoughts

Models are programs which achieve
a task or generate an output.

Model interfacing is becoming more
programmer centric and can be
called like any other APL.

There are multiple open source Al
frameworks available to help
managing models.

Al as a Function / Februrary 2024

Thank you.

Martin Hickey

Developer

Twitter: @mbhickeybot

Al as a Function / Februrary 2024 @ m h i C ke y b O t 20

