
Manipulating time with GDB
How to use GDB to perform time travel debugging

By Guinevere Larsen

time manipulation with GDB
How to use GDB to perform time travel debugging

By Guinevere Larsen
How you can help making GDB better at manipulating time

Help us im
prove

Summary

● Introduction

● How does it work

● Where the bugs come from

● A plea to help us fix them!

What are you talking about?
(gdb) reverse-continue
Continuing.

No more reverse-execution history.
0x000000000040112a in main ()

Who are you,
lady? Nice to meet you, I’m Guinevere!

I am hired to work on GDB, and
have been doing this for close to 3
years

I am the a maintainer of (one of) the
relevant area of GDB

I also like helping new contributors
out, and time travel debugging is full
of easy bugs to start

Introduction

And what is this
GDB business? A time wizard’s best friend!

The GNU Debugger allows you to
stop time for the inferior1, or slowly
execute it, and see how it ticks

Useful for C, C++, Ada, Fortran,
and much more!

Introduction

1. Inferior: GDB lingo for “program being debugged”

Time travel debugging

Also called reverse debugging but that’s boring

Lets instructions be undone, meaning you can see where things went wrong

The talk related to rr explains the idea and why it is great

If you didn’t manage to catch it, just use what I teach today to see it later

Introduction

How is that possible?
(gdb) help record
record, rec
Start recording.

List of record subcommands:

record btrace, record b -- Start branch trace recording.
record full -- Start full execution recording.

Record Details

Example:
addl $0x1, -0x8(%rbp)

Memory

Address:
 -0x8 (%rbp)
Value:
 00 00 00 00
Length:
 4 bytes

End Register

Register:
 %eflags
Values:
 [CF AF SF IF]

Register

Register:
 %rip
Values:
 0x4011ef

End

GDB Recording

Pro:
● Comes in a single tool
● Fully reconstructs the state

Con:
● Slow
● Harder to support

GDB disassembles one instruction

Store all the information that is
overwritten in a linked list

Tells the inferior to execute the
instruction

Repeat or stop the execution

Record Details

Disassembly:

We need to teach GDB about every
instruction it needs to support

Record Details

GDB recording
Simple issues

Spaghetti code:
The main disassembly function is
3 thousand lines strong and
almost unreadable

Auxiliary functions and structs
could also be better documented.

Instructions reported
missing

https://sourceware.org/bugzilla/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=SUSPENDED&bug_status=WAITING&bug_status=REOPENED&component=record&list_id=80171&product=gdb&query_format=advanced&short_desc=support&short_desc_type=allwordssubstr
https://sourceware.org/bugzilla/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=SUSPENDED&bug_status=WAITING&bug_status=REOPENED&component=record&list_id=80171&product=gdb&query_format=advanced&short_desc=support&short_desc_type=allwordssubstr

Longer Example

PC = 0x00 PC = 0x04 PC = 0x18 PC = 0x20 PC = 0x24

PC
0x400400

Size
4

Type
Arithmetic

PC
0x400404

Size
8

Type
Control Flow

PC
0x400418

Size
8

Type
Control Flow

PC
0x400420

Size
4

Type
Arithmetic

PC
0x400424

Size
4

Type
Arithmetic

GDB btrace

Pro:
● Comes in a single tool
● Fast

Con:
● Only restores the PC
● Only on some hardware

GDB tells the inferior to run

The CPU stores trace data in a
specific region of memory1

Once the inferior stops, GDB queries
the kernel for that area of memory

It then stores the PC, size and type
of instruction for all recorded ones

Record Details

1. The region is called the Branch Trace Store (BTS)
area

Testsuite regressions

Assertion errors

Usability issues

Record Details

GDB btrace
issues

Easy access to bugzilla search

https://sourceware.org/bugzilla/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=SUSPENDED&bug_status=WAITING&bug_status=REOPENED&list_id=80184&product=gdb&query_format=advanced&short_desc=btrace&short_desc_type=allwordssubstr

Different long Example

Checkpoint

Memory
Registers
Threads
Signals

Checkpoint

Memory
Registers
Threads
Signals

Instructions

RR

RR can record the execution of a
program outside of a debugger

It then saves the execution log to
your disk

Finally it starts a gdbserver1 that is
able to use this log to move back and
forth

Record Details

Disclaimer: These are what I understood based on
colleagues explanations, no first hand checking of code was
done on either.

udb
Proprietary tool that seems to work
similarly.

1. Gdbserver is a back-end of GDB, handling the
inferior and the OS, but not user commands.

How do we use that?

Front-end Details

(gdb) complete reverse-
reverse-continue
reverse-finish
reverse-next
reverse-nexti
reverse-search
reverse-step
reverse-stepi

GDB’s front end
2 options:
 1. Explicitly using a reverse command
 reverse-next

 2. Changing the execution direction:
 set execution-direction reverse
 next

Front-end Details

GDB’s command handling

○ If the command started with reverse-, set the execution to reverse

● GDB attempts to reuse as much code as possible for similarly named commands

● Whenever we know something works differently, we explicitly handle it with an
if statement.

○ If the command started with reverse-, set the execution back to forward

Front-end Details

RR
Uses a smart approach:

Offload as much as possible to
GDB

RR, in replay mode, is a gdbserver
with a reverse executing target

Meaning GDB handles the logic of
understanding commands, reading
debug information, etc

All RR has to do is “just” make the
hardware behave correctly
backwards

Front-end Details

Gdbserver is a back-end of GDB, handling the inferior and
the OS, but not user commands.

What could possibly go wrong?

Issues to be fixed

(gdb) reverse-until
Undefined command: "reverse-until". Try "help".
(gdb) frame
#0 main () at t.c:24
24 setup (n);
(gdb) set exec-direction reverse
(gdb) step
main () at t.c:23
23 int p = 0;

● So, so many things go wrong

● User experience improvements

Quick access to the bugzilla search

Issues

https://sourceware.org/bugzilla/buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=SUSPENDED&bug_status=WAITING&bug_status=REOPENED&component=record&list_id=80077&product=gdb&query_format=advanced

Commands
● Until

○ Works (badly) if setting
direction manually

○ No reverse- version

● Record instruction-history
● Record function-call-history

○ only available for btrace

Issues

Bug reporting it Stackoverflow question

https://sourceware.org/bugzilla/show_bug.cgi?id=24788
https://stackoverflow.com/questions/22507169/how-to-run-record-instruction-history-and-function-call-history-in-gdb

(gdb) reverse-next
24 setup (n);
(gdb) reverse-step

No more reverse-execution history.
main () at t.c:23
23 int p = 0;

This is a real debug session

That is not what I would expect
the “step” command to do

Issues

UX

(gdb)continue
Continuing.

No more reverse-execution history.
main () at t.c:25
25 p++;

And if we decide to continue
forward, the warning makes it
sound like we can’t go forward
anymore

In case you want a big challenge

Record full needs a lot of help

● Multiple inferiors
○ The history is saved as a global

variable.
○ There is no way to know to whom

the history belongs
● Multithreading

○ Similarly, there is no way to know
which thread owns a recorded
instruction

● Unusably slow
○ Needs profiling, then improving on

the hotspots

Harder issues

Where do I come in?

Call to action

Approved-By: Guinevere Larsen <blarsen@redhat.com> (record-full)

I want to help out!

Things I like:
● Reverse debugging
● Getting people into open source
● Talking about stuff I like

Reach out if you anything piqued your interest!

Call to action

More questions?

Thank you!
E-mail: blarsen@redhat.com
IRC: guinevere in libera-chat, #gdb
Linkedin: Guinevere Larsen

