Maia SDR

An open-source FPGA-based project for AD936x+Zynq radios

Dr. Daniel Estévez (EA4GPZ / MOHXM)

4 February 2024
FOSDEM, Brussels

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 1/19

What is new since the summer 20237

@ Support for new devices:

o Pluto+ (similar to the ADI Pluto, but with 1GbE and SD card)
@ Microphase AntSDR E310 and E200 (Zynq 7020, 1GbE, SD card)

@ Spectrum peak detect mode (as an alternative to average mode): clever way of using
a single DSP48E1 either as a power integrator or as a power comparator.

@ Bugfixes, dependency updates, base Pluto firmware updates...

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 2/19

Technical key points of Maia SDR

In this talk hopefully we’ll cover:
e FFT
e DMA
@ WebGL2 waterfall

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 3/19

FFT

@ Flexible pipelined FFT implementation in Amaranth: think of it as Verilog generator in
Python if you want.

@ Focus in good performance with low resource usage.
@ Single-delay-feedback decimation-in-frequency architecture.

@ Radix-2, radix-4 and radix-22 options. Radix-22 gives best results and is used by
default.

@ Twiddle factor multiplication: can use either 3 DSPs for the complex product, or a
single DSP running with a 3x clock.

@ Configurable bit widths and truncation schedule.

@ Optional window multiplication.

@ Bit exact model in Python, compared against Numpy’s FFT.

@ Use in Maia SDR: 4096 points, Blackman-harris window, 12-bit input, 18-bit output,
62.5 MHz clock. 2.2 kLUT, 1.4 kFF, 9.5 BRAM, 6 DSP.

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 4/19

S. He, M. Torkelson, "A new approach to pipeline FFT processor," Proceedings of
International Conference on Parallel Processing, 1996, 766-770.

e

x1)Q v X@8)
O A X(12)
«d4) .\\ o7 OO L) Lo X@)
N/ 7R e _oxu0)

:\\;.g.gom-:am

X(15)

BF I BF 1 BF HI BF 1V

Figure 3: Radix-2? DIF FFT flow graph for N = 16

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 5/19

o (2 S [[H]

x(n) BF2l BF2II BF2l BF2H BF2I BF2Y 8F2l BF2U
win) | wam W3y
A | s | s [« [5 [2 | v] o |

Figure 4: R2%SDF pipeline FFT architecture for N = 256

Dr. Daniel Estévez (EA4GPZ / MOHXM)

Maia SDR

FOSDEM 2024

6/19

> ErneN/Z

o BN /2

e ErineN /2

t—= Lin+N/%J

(ii). BF2II

Figure 5: Butterfly structure for R22SDF FFT processor

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 7/19

DMA: FPGA side

@ Two use cases:

o Waterfall. Write a waterfall line into a ring buffer as soon as it is ready.
o 1Q recorder. Write samples continuously to a very large buffer until the end of buffer or
“stop” is pressed.

@ Two flavours:

o DmaBRAMWrite. Copies the contents of a BRAM into a buffer in a ring.
@ DmaStreamirite. Reads from an AXI4-Stream-like interface and writes to a buffer.

@ Implement an AXI3 Manager interface. Xilinx favours AXl4, but the FPGA ports into
the SoC are AXI3, so we save us a protocol converter.

@ Most stupid implementation ever: Addresses hardcoded at synthesis time. Almost no
need for software control.

@ Use one SoC AXI port per DMA. No need for an interconnect in the FPGA.
@ Very low resource usage. Waterfall DMA: 26 LUTs, 46 flip-flops.

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 8/19

%00 X6 40

1

I I
(E] 1
g I
14 i)
| 1)
s _oei _! AU gyosz
[os] [s]
(]]
o T o o TR e
£3 - Teuooielu
)
ouse @ neo bl -
[s] [os]

-

C-
-
c
()
S
()
<
O
(&)
)
O
O
—
—
®)
c
P
®)
—
c
o
S
o
<
O
(&)
)
O
@)
T

e

FOSDEM 2024

Maia SDR

Dr. Daniel Estévez (EA4GPZ / MOHXM)

The Good, the Bad

@ ACP port. Good: Fully coherent. Bad: only one port, will evict cache lines that are
actively used by the software (round-robin/random eviction policy).

@ HP ports. Good: 4 ports, doesn’t disturb the L2 cache. Bad: the software needs to
manage coherency.

Maia SDR uses the HP ports, so it must manage coherency.

Coherency management methods:
@ Mark memory as uncacheable. Good: simple solution. Bad: painfully slow accesses.

@ Mark memory as cacheable. Manage cache invalidation manually. Good: fast
accesses. Bad: complex.

Maia SDR uses manual cache invalidation.

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 10/19

and The Ugly

Managing caches manually from Linux requires a few ugly things.

@ The L1 and L2 caches are physically indexed and tagged. L1 invalidation must be
done by virtual address. The pages to invalidate must be mapped in the MMU. L2 is
invalidated by physical address.

@ Cache invalidation must be done line by line (32-byte lines). This is very slow, but it's
much slower to read uncacheable memory.

@ The Linux kernel cannot map a 400 MiB buffer (used by the 1Q recorder) into its
address space. There is the 3G/1G split, and mapping a large buffer with the Linux
DMA framework exceeds the 1G kernel address space. We cannot use any of the
Linux DMA framework to help us.

Solutions:

@ Only map the DMA buffers into userspace.

@ Implement a kernel module that performs cache invalidation by calling the relevant
low-level functions, using userspace virtual addresses. These low-level functions are
not exported for modules to use. The kernel must be patched (very ugly).

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 11/19

DMA: software side

@ maia-kmod, a Linux kernel module. Manages waterfall and IQ recorder DMA buffers.

@ 1Q recorder: userspace only mmaps the buffer when it needs to read the recording,
after the recording has finished. mmap’ing calls L1 and L2 cache invalidation
functions, using the virtual addresses just obtained for the mapping.

@ Waterfall: the ring buffer is permanently mmap’ed by userspace. An ioctl is used by
userspace to indicate that a buffer in the ring must be invalidated (the buffer number
is the ioctl argument).

@ A word of caution: typically, mmap’ing /dev/mem and similar techniques do not give
you regular cacheable memory. Using remap_pfn_range () gives us full control of
memory attributes.

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 12/19

WebGL2 waterfall

@ Coded in Rust using WebAssembly and WebGL2.
@ Uses a custom render engine.

@ The waterfall data is stored as a 2D texture that shades a scrolling rectangle that
uses a “doubly-mapped buffer’-like trick. The fragment shader uses the GLSL ES 3.0
function texture () to do a look-up in a 1D texture colormap.

@ Only the waterfall data that changes is updated with texSubImage2D ().
@ The “ticks” in the frequency scale are rendered using the LINES draw mode.

@ The labels in the frequency scale are pre-rendered onto a texture generated using
CanvasRenderingContext2D text rendering features.

@ Frequency ticks and labels drawn are selected dynamically according to zoom level.

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 13/19

Waterfall example: demo

Dr. Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 14/19

Waterfall example: Rust code

7 #[wasm_bindgen]
8 ~ pub fn make_waterfall(canvas: &str) -> Result<(), Jsvalue> {
9 let (window, document) = maia_wasm::get_window_and_document()?;
10 let canvas = Rc::new(
11 document
12 .get_element_by_id(canvas)
13 .ok_or(&format!("unable to get {canvas} canvas element"))?
14 .dyn_into::<web_sys::HtmlCanvasElement>()?,
15),
16 let (render_engine, waterfall, _) = maia_wasm::new_waterfall(&window, &document, &canvas)?;

Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 15/19

18
19
20
21
22
23
24
25
26
27
28
29
30

let center_freq = 915e6;

let samp_rate = 960e3;

// An averaging of 8 and FFT size of 4096 were used to construct the
// waterfall data

let waterfall_averaging = 8;

let waterfall_rate = samp_rate / ((NFFT * waterfall_averaging) as f64);

{
let mut waterfall = waterfall.borrow_mut();
waterfall.set_freqg_samprate(center_freq, samp_rate, &mut render_engine.borrow_mut())?;
waterfall.set_waterfall_min(20.0);
waterfall.set_waterfall_max(280.0);
waterfall.set_waterfall_update_rate(waterfall_rate as f32);

}

Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 16/19

32 let mut generator = WaterfallGenerator::new();

33 let handler = Closure::<dyn FnMut()>::new({

34 let waterfall = Rc::clone(&waterfall);

35 move || {

36 generator.put_line(&mut waterfall.borrow_mut());

37 }

38)i

39 let interval_ms = (1000.0 / waterfall_rate).round() as i32;
40 window.set _interval with callback and timeout_and arguments_0(
41 handler.into_js_value().unchecked_ref(),

42 interval_ms,

43)?;

44

45 maia_wasm: :setup_render_loop(render_engine, waterfall);

46 ok(())

Dr. Daniel Estévez (EA4GPZ / MOHXM)

Maia SDR

FOSDEM 2024

17/19

74
75
76
77
78
79
80
81
82
83
84
85

v fn put_line(&mut self, waterfall: &mut wWaterfall) {
let line = &self.data[NFFT * self.current_line..NFFT * (self.current_line + 1)];
self.current_line += 1;
if self.current_line == WATERFALL_LINES {
self.current_line = 0;
}
// safety: the view into self.data is always dropped before self.data
unsafe {
let line = js_sys::Float32Array::view(line);

waterfall.put_waterfall _spectrum(&line);

Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024

18/19

Waterfall example: HTML and JavaScript code

1 <ldoctype html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <meta name="viewport" content="width=device-width, height=device-height, initial-scale=1">
6 <title>Maia SDR waterfall example</title>
7 <script type="module" src="./index.js"></script>
8 </head>
9 <body>
10 <canvas id="waterfall" style="width: 100%; height: 80vh; touch-action: none;'"></canvas>
11 </body>
12 </html>
1 import init, { make_waterfall } from "./pkg/waterfall_example.js";
2
3 async function run() {
4 awailt init();
5 make_waterfall("waterfall");
6 3
7
8 run();

Daniel Estévez (EA4GPZ / MOHXM) Maia SDR FOSDEM 2024 19/19

