
Testing Go programs with go-internal/
testscript

Giuseppe Maxia

testing Go command line programs with testscript 1

What will you learn

• Using testscript to test command line programs;

• Testing the executable without intermediate steps;

• Using built-in commands and conditions;

• Creating and using custom commands and conditions.

testing Go command line programs with testscript 2

Why
testing Go command line programs with testscript 3

Stating the problem, i.e. 'the old way'

If you want to test a command line program:

1. Compile the executable nd put it in a known PATH

2. Generate the testing environment

3. then:

• 3a. run the executable with shell scripts

• 3b. OR call the executable from Go code functions.

testing Go command line programs with testscript 4

TESTSCRIPT
testing Go command line programs with testscript 5

Introducing testscript

• It's a Go library

• But also a standalone tool

• Uses a simple file archive named txtar

• It was created to test the Go tool itself

• Now released within the go-internal package.

testing Go command line programs with testscript 6

A first example

testdata/1/hello.txtar
exec echo 'hello world'
stdout 'hello world\n'
! stderr .

hello_test.go
package script_test
import (
 "testing"
 "github.com/rogpeppe/go-internal/testscript"
)
func TestScript(t *testing.T) {
 testscript.Run(t, testscript.Params{
 Dir: "testdata",
 })
}

testing Go command line programs with testscript 7

A modified first example (1)

exec echo 'hello world'
stdout 'h\w+ w\w+'
! stderr .

testing Go command line programs with testscript 8

A modified first example (2)

exec echo 'hello world'
stdout 'h\w+'
stdout 'w\w+'
! stderr .

testing Go command line programs with testscript 9

Using local files

exec cat data.txt
stdout 'hello world\n'
! stderr .
exec cat dir1/data2.txt
stdout something

-- data.txt --
hello world

-- dir1/data2.txt --
something else

testing Go command line programs with testscript 10

The testscript main commands (1)

• exec runs an executable

• stdout checks the standard output with a regular expression

• stderr checks the standard error with a regular expression

• stdin provides standard input for the next command

• exists checks that a file exists

• stop, skip interrupt the test

Note: the ! symbol before a keyword reverses the check.
testing Go command line programs with testscript 11

The testscript main commands (2)

• cmp, cmpenv: compare two files or streams

• env sets a variable

• cat, cd, cp, chmod, mkdir, mv, rm: as in a shell

testing Go command line programs with testscript 12

The testscript main conditions

• [exec:file_name] checks that an executable is in $PATH

• [unix] checks that the test runs under a Unix OS

• [net] checks that network connection is available

• [go1.x] checks that at least the wanted Go version is used

• [$GOARCH]checks that we are using the wanted architecture

• [$GOOS] checks that the given operating system is being used

testing Go command line programs with testscript 13

The testscript environment

Main environment variables:

• WORK=<temporary-directory>

• HOME=/no-home

• TMPDIR=$WORK/tmp

The scripts run in $WORK (Different for each script)

testing Go command line programs with testscript 14

Sample environment in action

go test -run 'TestScriptGeneric/testdata/1/hello' -v ./no-main/
=== RUN TestScriptGeneric
=== RUN TestScriptGeneric/testdata/1
=== RUN TestScriptGeneric/testdata/1/hello

 testscript.go:558: WORK=$WORK
 PATH=/usr/bin:/usr/local/bin:/usr/sbin
 GOTRACEBACK=system
 HOME=/no-home
 TMPDIR=$WORK/.tmp
 devnull=/dev/null
 /=/
 :=:
 $=$
 exe=

 > exec echo 'hello world'
 [stdout]
 hello world
 > stdout 'hello world\n'
 > ! stderr .
 PASS

--- PASS: TestScriptGeneric (0.01s)

testing Go command line programs with testscript 15

Examples with commands and conditions

! [unix] skip This test requires a Unix operating system
[linux] exec echo 'good choice of operating system!'
[exec:seq] exec echo 'command "seq" was found'
[go.1.18] exec echo 'we can run generics!'
exists file1.txt
! exists file2.txt
cp file1.txt file2.txt
exists file2.txt

-- file1.txt --
this is file 1

testing Go command line programs with testscript 16

The transparent executable (1)

exec wordcount -h
! stdout .
stderr -count=7 'shows number of'

That wordcount is an executable that we want to make sure it
exists

testing Go command line programs with testscript 17

The transparent executable (2)

In the test

func TestMain(m *testing.M) {
 exitCode := testscript.RunMain(m, map[string]func() int{
 "wordcount": cmd.RunMain,
 })
 os.Exit(exitCode)
}

testing Go command line programs with testscript 18

The transparent executable (3)

In the main

func main() {
 os.Exit(cmd.RunMain())
}

func RunMain() int {
 err := runWordCount()
 if err != nil {
 fmt.Fprintf(os.Stderr, "%s\n", err)
 return 1
 }
 return 0
}

testing Go command line programs with testscript 19

The transparent executable (4)

• There is no separate executable

• the "executable" that we run in the tests is the compiled form of
the test itself.

testing Go command line programs with testscript 20

Custom
commands

testing Go command line programs with testscript 21

test custom command 'sleep_for'

sleep_for 1

test custom command 'check_files'

check_files $WORK file1.txt file2.txt

-- file1.txt --

-- file2.txt --

Where do these commands come from?

testing Go command line programs with testscript 22

custom commands definition

func TestWordCountAdvanced(t *testing.T) {
 testscript.Run(t, testscript.Params{
 Dir: "testdata/advanced",
 Cmds: customCommands(), // <<<<
 })
}

testing Go command line programs with testscript 23

custom commands creation (1)

• The Cmds parameter is a map of functions

• Each function accepts the following parameters:

• a testscript object;

• a negation Boolean flag;

• a list of string arguments

testing Go command line programs with testscript 24

custom commands creation (2)

Each function should return nothing when the execution was
successful;
It should call testscript.Fatal if something goes wrong.

testing Go command line programs with testscript 25

commands implementation (1)

func customCommands() map[string]func(ts *testscript.TestScript, neg bool, args []string) {
 return map[string]func(ts *testscript.TestScript, neg bool, args []string){

 // check_files will check that a given list of files exists
 // invoke as "check_files workdir file1 [file2 [file3 [file4]]]"
 // The command can be negated, i.e. it will succeed if the given files do not exist
 // "! check_files workdir file1 [file2 [file3 [file4]]]"
 "check_files": checkFiles,

 // sleep_for will pause execution for the required number of seconds
 // Invoke as "sleep_for 3"
 // If no number is passed, it pauses for 1 second
 "sleep_for": sleepFor,
 }
}

testing Go command line programs with testscript 26

commands implementation (2)

// sleepFor is a testscript command that pauses the execution for the required number of seconds
func sleepFor(ts *testscript.TestScript, neg bool, args []string) {
 duration := 0
 var err error
 if len(args) == 0 {
 duration = 1
 } else {
 duration, err = strconv.Atoi(args[0])
 ts.Check(err)
 }
 time.Sleep(time.Duration(duration) * time.Second)
}

testing Go command line programs with testscript 27

commands implementation (3)

// checkFile is a testscript command that checks the existence of a list of files
// inside a directory
func checkFiles(ts *testscript.TestScript, neg bool, args []string) {
 if len(args) < 1 {
 ts.Fatalf("syntax: check_file directory_name file_name [file_name ...]")
 }
 dir := args[0]

 for i := 1; i < len(args); i++ {
 f := path.Join(dir, args[i])
 if neg {
 if fileExists(f) {
 ts.Fatalf("file %s found", f)
 }
 }
 if !fileExists(f) {
 ts.Fatalf("file not found %s", f)
 }
 }
}

testing Go command line programs with testscript 28

Custom
conditions

testing Go command line programs with testscript 29

custom conditions

the actual version is passed to this process in the Setup clause of testscript.Params

exec wordcount -version

cmpenv stdout version.txt

test the custom condition about version

[version_is_at_least:0.2] stop 'this test is satisfied'

if we use a lower version, we enter this impossible comparison and the test fails

exec echo 'aaa'

stdout 'bbb'

-- version.txt --

$WORDCOUNT_VERSION

Where do these conditions come from?
testing Go command line programs with testscript 30

custom conditions definition

func TestWordCountAdvanced(t *testing.T) {

 testscript.Run(t, testscript.Params{

 Dir: "testdata/advanced",

 Condition: customConditions, // <<<<

 Cmds: customCommands(),

 RequireExplicitExec: true,

 Setup: func(env *testscript.Env) error {

 env.Setenv("WORDCOUNT_VERSION", cmd.Version) // <<<

 return nil

 },

 })

}

testing Go command line programs with testscript 31

custom conditions creation (1)

The Condition parameter points to a single function:
 * receiving a string as input
 * returning a boolean and error

testing Go command line programs with testscript 32

custom conditions creation (2)

The function must parse the input and eventually extract the
parameters, if any were designed.

It returns true if the condition was met.

testing Go command line programs with testscript 33

Condition implementation (1)

// customConditions is a testscript function that handles all the conditions defined for this test
func customConditions(condition string) (bool, error) {
 // assumes arguments are separated by a colon (":")
 elements := strings.Split(condition, ":")
 if len(elements) == 0 {
 return false, fmt.Errorf("no condition found")
 }
 name := elements[0]
 switch name {
 case "version_is_at_least":
 return versionIsAtLeast(elements)
 case "exists_within_seconds":
 return existsWithinSeconds(elements)
 default:
 return false, fmt.Errorf("unrecognized condition '%s'", name)
 }
}

testing Go command line programs with testscript 34

Condition implementation (2)

func versionIsAtLeast(elements []string) (bool, error) {

 if len(elements) < 2 {

 return false, fmt.Errorf("condition '%s' requires version", elements[0])

 }

 version := elements[1]

 return versionGreaterOrEqual(cmd.Version, version)

}

testing Go command line programs with testscript 35

Condition implementation (3)

func existsWithinSeconds(elements []string) (bool, error) {
 if len(elements) < 3 {
 return false, fmt.Errorf("condition 'exists_within_seconds' requires a file name and the number of seconds")
 }
 fileName := elements[1]
 delay, err := strconv.Atoi(elements[2])
 if err != nil {
 return false, err
 }
 if delay == 0 {
 return fileExists(fileName), nil
 }
 elapsed := 0
 for elapsed < delay {
 time.Sleep(time.Second)
 if fileExists(fileName) {
 return true, nil
 }
 elapsed++
 }
 return false, nil
}

testing Go command line programs with testscript 36

Summary

• testscript can greatly simplify the testing of command line
programs;

• Programs that manipulate texts can especially suit the
environment, thanks to txtar files;

• No need for separate compilation of the executable;

• Built-in commands and conditions allow for quick and accurate
testing;

• The testing environment is reasonably isolated, allowing parallel
testing Go command line programs with testscript 37

Sample code and slides
https://github.com/datacharmer/wordcount

testing Go command line programs with testscript 38

https://github.com/datacharmer/wordcount

More resources

Splendid articles about testscript: https://bitfieldconsulting.com/
golang/tag/testscript

The original documentation: https://pkg.go.dev/github.com/
rogpeppe/go-internal/testscript

Presentations about testscript:
* https://github.com/qba73/belfast-go-meetup
* https://github.com/qba73/dublin-go-meetup

testing Go command line programs with testscript 39

