Arm64EC:
Microsoft’s Emulation Frankenstein

Peter Cawley (@corsix), 4th February 2024, FOSDEM



Why am | here?

= O LuaJIT / LuaJIT Q

{> Code

() Issues 42 i1 Pull requests 15 L)) Discussions (») Actions () Security |~ Insights 53 Settings

Support for the ARM64EC ABI on Windows ARM64 #1096

@ glosetl kobykahane opened this issue on Sep 23, 2023 - 10 comments

NG

kobykahane commented on Sep 23, 2023 - edited by corsix ~

LuaJIT recently introduced support for Windows ARM64 targets, based on the original Windows ARM64 ABI.

In Windows 11, an additional ABI was introduced, ARMG64EC. This ABI allows mixing native ARM64 code and emulated x64
code in the same process. This is useful for projects that want to support, e.g., legacy x64-compiled plugin DLLs on ARM64
devices. It would be useful if LuaJIT could be built for ARM64EC, so it could be consumed by hosting programs with such
requirements.

Presently only MSVC supports this ABI, although there's been some initial work in clang as well. To target this ABI, the
/arm64EC option is passed in the cl.exe command line, or /machine:arm64ec to lib.exe or link.exe. Details of the ABI are
described in

and . Some key issues that appear to impact a potential port of LuaJIT:

e A one-to-one mapping between the ARM64 processor context and the emulated x64 processor context is defined. To
facilitate this, the ABI bans certain ARM64 registers from being used, including x13, x14, x23, x24, x28 and v16-v31. The
interpreter and the JIT would need to avoid using the banned registers.

e When the JIT allocates executable memory, it needs to do so with VirtualAlloc2 and specify
MEM_EXTENDED_PARAMETER_EC_CODE , so the system knows the dynamically generated code is ARM64 code and not x64
code.

e When a call is made to an externally provided function pointer (i.e., a lua_CFunction or via FFl), in the general case the
provided function might be native ARM64 code or it might be x64 code that needs to be run by the emulator, so the
indirect call needs to be made via a call checker provided by the OS, e.g., __os_arm64x_check_icall . The call checkers
are automatically used by compiler-generated code, but need to be invoked explicitly by assembly code.

®




Disclaimers

* | do not work for Microsoft.
* | do not work for Intel.

* | do not work for Arm.

* | am not Mike Pall.

* \/lews are my own.



Agenda

1. General landscape of emulating x64 on arm64. «
2. What is Arm64EC?
3. Lessons learnt porting LuaJIT to Arm64EC.



Emulation main loop, 101

Turn:
sub eax, dword ptr [rsp + 259]

Into:
add xl1lob, sp, #259

ldr wloe, [x16]
subs wd , w@, wlo

“Just” repeat this for every instruction.



Emulation main loop, 201

Turn:
sub eax, dword ptr [rsp + 259]

Into:
// TODO: memory ordering?

add xl1o, sp, #259

ldr wlo, [x16] // TODO: MMU / devices?
subs w@ , wd, wlo

// TODO: fixup flags?



armo4:

CF

Tinv?

OF

PF

SF

LF



Existing ways to emulate x64 on arm64

gemu-system, gemu-user

jart/blink, FEX-Emu, Box64

Rosetta 2



Apple’s pitch to developers

1. Target x64, get fast emulation on custom hardware.

2. Port to armb64, get even faster native execution.



10

Microsoft’s less appealing pitch

1. Target x64, get slow emulation.

2.Can’t port to arm64 if closed-source libraries / plugins.



11

Performance example

LuadlT benchmark suite, on M1 Max MacBook Pro:
 macOS native arm64: 33 seconds.

* macOS Rosetta 2 x64: 44 seconds (+33%).
Same hardware, Windows on Arm In hypervisor VM:

e Windows native armo4: 37 seconds.
 Windows emulated x64: 106 seconds (+186%).



12

Option 1 is too slow, and option 2 is
Impossible, but maybe option 12 Is both
fast and possible?



13

Agenda

1. General landscape of emulating x64 on arm64.
2.What is Arm64EC? +
3. Lessons learnt porting LuaJIT to Arm64EC.



14

et an application mix arm64 and x64,
with cheap interop between native arm64
parts and emulated x64 parts.

And thus Arm64EC was born.




15

Cheap arm64/x64 interop means:

1. Shared virtual address space.

2. Shared data structure layouts.

3. Shared call stacks.

4. Mode switch only at function call or return.

5. Adjust calling conventions a little bit.



16

Shared virtual address space

1. Executable memory needs tagging as armo4 or xo64
(OS maintains a bit per page, code can query for it).

2. Emulated x64 code issues lots of memory barriers.

3. Native arm64 code Issues memory barriers where
required (care required by the porting programmer).



17

Shared data structure layouts (1)

struct foo {

Llong x;

double vy;

vold* p;

} void (*fn)(void);



18

Shared data structure layouts (2)

struct my_exception_state 1{
Jmp_buf on_error_jump_to;

¥



19

Shared data structure layouts (3)

struct my_thread_state {
CONTEXT ctx;

¥



20

Making yjmp_buf, CONTEXT, etc. compatible

Emulated x64 armo64
64-bit GPRs 16 (rax, recx, ..., r15) 32 (x0 ... x30, sp)
Special registers rip, rflags, mxcsr, gs pc, pstate, fpcr, fpsr
128-bit FPRs 16 (xmmO ... xmm15) 32 (vO ... v31)

80-bit FPRs 8 (the x87 stack) 0

Casualties: x13, x14, x23, x24, x28, v16 ... v31.



21

Shared call stacks

1.armo4 has LR, x64 expects return address on stack.

2.armo4 requires SP aligned to 16 bytes in load/store,
x64 merely strongly recommends 16 byte alignment.

So some fixup work required on mode switches.



22

About those mode switches

1. Calling conventions mostly unchanged (ex. varargs).

2. But the arm64 and x64 conventions are different, so
SOome conversion work required at mode switches.

3. Exact conversion logic depends on the types involveaq.

4.armo64 code responsible for doing most of the work.



23

Function calls in Arm64EC code

Marshall arguments for arm64 CC

Is target arm64 code?

No ¢

Put target function in x9
Call target function Call exit thunk function

Put exit thunk function in x10

Unmarshall results from arm64 CC




24

Function calls in Arm64EC code, with helper

Marshall arguments for arm64 CC

Put target function in x11, exit thunk function in x10

Call __os_arm64x_dispatch_icall (swizzles x9/x10/x11 as appropriate)

Call x11

Unmarshall results from arm64 CC




25

Contents of an exit thunk function

Unmarshall arguments from arm64 CC, marshall them to x64 CC

Ensure target function still in x9




26

Contents of __os_arm64x_dispatch_call no_redirect

Push LR on to the stack

$ No
Does x9 point at x64 code? ad Does x9 point just after call x16? Pop from stack into LR
Yesi Yes $ ¢

Emulate one instruction at x9 Set LR to x9 Set x4 to SP
Return (to LR) Forcibly align SP

Advance x9 to next instruction

Tailcall x9’s alternative entry point



27

Alternative entry points?

* Every armo64 function that could be called from x64

code needs an alternative entry point, for when the
caller was x64.

* The alternative entry point is arm64 code for handling
the mode switch.

o Offset of alternative entry point specified as 32-bit int
IN the 32 bits iImmediately before the function.



28

Contents of an alternative entry point

Unmarshall arguments from x64 CC (using x4 as SP)
Fither |

Marshall arguments for arm64 CC

¢
¢

Unmarshall results from arm64 CC

Inlined copy of code from x9

Marshall results for x64 CC

Tailcall __os_arm64x_dispatch_ret



29

Contents of __os_arm64x_dispatch_ret

$ No
Does x9 point at x64 code? ad Does x9 point just after call x16? Pop from stack into LR
Yesi Yes $ ¢

Emulate one instruction at x9 Set LR to x9 Set x4 to SP
Return (to LR) Forcibly align SP

Advance x9 to next instruction

Tailcall x9’s alternative entry point



30

Agenda

1. General landscape of emulating x64 on arm64.
2. What is Arm64EC?
3. Lessons learnt porting LuaJlT to Arm64EC. «



31

Impact on LuaJIT: losing 5 GPRs & 16 FPRs

1. Interpreter doesn’t care about losing x13-14, v16-31.
2.Losing x23-24 mitigated via some ~zero cost tricks.
3. Losing x28 really annoying, requires spills/restores.

4. Easy to make JIT compiler avoid the lost registers,
though likely impact on speed of generated code.



32

Impact on LuaJIT: mode switches

C compiler handles most of them. Three arm64 to x64 it doesn’t:
1. Interpreter opcode for calling Lua API C functions.
2. Interpreted FFI calls to arbitrary functions.
3. JIT-compiled FFI calls to functions with “simple” types.
One x64 to arm64 it doesn’t:

1. FFI callbacks with “simple” types.



How Arm64EC LuaJIT interprets FFI calls

Is target arm64 code?

Call target function Call emulator (with target function)
Unmarshall results from arm64 CC Unmarshall results from x64 CC

Works fine in practice, unless target is a typeless
arm64 function relying on presence of x10. Could fix

this, but the need has not yet arisen.
33




How Arm64EC LuaJIT compiles FFI calls

Marshall arguments for arm64 CC

Put target function in x11, generic exit thunk in x10, type signature in x15

Call __os_arm64x_dispatch_icall (swizzles x9/x10/x11 as appropriate)

Call x11

Works fine in practice, unless target is a typeless
armo4 function relying on presence of x10 that also

happens to trash x15.
34




35

Impact on LuaJIT: performance

Windows on Arm VM under hypervisor:

 Windows native armo64: 37 seconds.
 Windows emulated x64: 106 seconds (+186%).
 Windows Arm64EC: 38 seconds (+3%).



36

Bonus problem: function hooking
1. Linux has LD_PRELOAD.

2. macOS / 10S have DYLD_INSERT_LIBRARIES.

3. Windows has ... ad-hoc x64 machine code patching.

Casualty: Wrap public arm64 functions in an x64 shell
that does nothing except a tail call to the arm64 code.
___0s_armo4x_dispatch_icall can skip over the shell.



