
Peter Cawley (@corsix), 4th February 2024, FOSDEM

Arm64EC:
Microsoft’s Emulation Frankenstein

1

Why am I here?

2

Disclaimers

• I do not work for Microsoft.

• I do not work for Intel.

• I do not work for Arm.

• I am not Mike Pall.

• Views are my own.

3

Agenda

1. General landscape of emulating x64 on arm64. ←

2. What is Arm64EC?

3. Lessons learnt porting LuaJIT to Arm64EC.

4

Emulation main loop, 101
Turn:

 sub eax, dword ptr [rsp + 259]

Into:

 add x16, sp, #259
 ldr w16, [x16]
 subs w0 , w0, w16

“Just” repeat this for every instruction.

5

Emulation main loop, 201
Turn:

 sub eax, dword ptr [rsp + 259]

Into:

 // TODO: memory ordering?
 add x16, sp, #259
 ldr w16, [x16] // TODO: MMU / devices?
 subs w0 , w0, w16
 // TODO: fixup flags?

6

Flags

x64: AF CF OF PF SF ZF

↕ ↕ ↕ ↕ ↕ ↕

arm64: ? C V ? N Z

inv?

7

Existing ways to emulate x64 on arm64

qemu-system, qemu-user

jart/blink, FEX-Emu, Box64

Rosetta 2

8

Apple’s pitch to developers

1. Target x64, get fast emulation on custom hardware.

2. Port to arm64, get even faster native execution.

9

Microsoft’s less appealing pitch

1. Target x64, get slow emulation.

2. Can’t port to arm64 if closed-source libraries / plugins.

10

Performance example
LuaJIT benchmark suite, on M1 Max MacBook Pro:

• macOS native arm64: 33 seconds.

• macOS Rosetta 2 x64: 44 seconds (+33%).

Same hardware, Windows on Arm in hypervisor VM:

• Windows native arm64: 37 seconds.

• Windows emulated x64: 106 seconds (+186%).

11

Option 1 is too slow, and option 2 is
impossible, but maybe option 1½ is both

fast and possible?

12

Agenda

1. General landscape of emulating x64 on arm64.

2. What is Arm64EC? ←

3. Lessons learnt porting LuaJIT to Arm64EC.

13

Let an application mix arm64 and x64,
with cheap interop between native arm64

parts and emulated x64 parts.
And thus Arm64EC was born.

14

Cheap arm64/x64 interop means:
1. Shared virtual address space.

2. Shared data structure layouts.

3. Shared call stacks.

4. Mode switch only at function call or return.

5. Adjust calling conventions a little bit.

15

Shared virtual address space
1. Executable memory needs tagging as arm64 or x64

(OS maintains a bit per page, code can query for it).

2. Emulated x64 code issues lots of memory barriers.

3. Native arm64 code issues memory barriers where

required (care required by the porting programmer).

16

Shared data structure layouts (1)
struct foo {
 long x;
 double y;
 void* p;
 void (*fn)(void);
};

17

Shared data structure layouts (2)

struct my_exception_state {
 jmp_buf on_error_jump_to;
};

18

Shared data structure layouts (3)

struct my_thread_state {
 CONTEXT ctx;
};

19

Making jmp_buf, CONTEXT, etc. compatible
Emulated x64 arm64

64-bit GPRs 16 (rax, rcx, …, r15) 32 (x0 … x30, sp)

Special registers rip, rflags, mxcsr, gs pc, pstate, fpcr, fpsr

128-bit FPRs 16 (xmm0 … xmm15) 32 (v0 … v31)

80-bit FPRs 8 (the x87 stack) 0

Casualties: x13, x14, x23, x24, x28, v16 … v31.

20

Shared call stacks
1. arm64 has LR, x64 expects return address on stack.

2. arm64 requires SP aligned to 16 bytes in load/store,
x64 merely strongly recommends 16 byte alignment.

So some fixup work required on mode switches.

21

About those mode switches
1. Calling conventions mostly unchanged (ex. varargs).

2. But the arm64 and x64 conventions are different, so
some conversion work required at mode switches.

3. Exact conversion logic depends on the types involved.

4. arm64 code responsible for doing most of the work.

22

Function calls in Arm64EC code
Marshall arguments for arm64 CC

Is target arm64 code?

Put target function in x9Put exit thunk function in x10

Call target function Call exit thunk function

Yes No

23

Unmarshall results from arm64 CC

Function calls in Arm64EC code, with helper
Marshall arguments for arm64 CC

Put target function in x11, exit thunk function in x10

Call __os_arm64x_dispatch_icall (swizzles x9/x10/x11 as appropriate)

Call x11

24

Unmarshall results from arm64 CC

Contents of an exit thunk function
Unmarshall arguments from arm64 CC, marshall them to x64 CC

Ensure target function still in x9

Put __os_arm64x_dispatch_call_no_redirect in x16, call x16

Unmarshall results from x64 CC, marshall them to arm64 CC

Return

25

Contents of __os_arm64x_dispatch_call_no_redirect

Advance x9 to next instruction

Does x9 point just after call x16?

Set LR to x9

Pop from stack into LR

Return (to LR)

Set x4 to SP

Forcibly align SP

Tailcall x9’s alternative entry point

Push LR on to the stack

Does x9 point at x64 code?

Emulate one instruction at x9

Yes Yes

No No

26

Alternative entry points?
• Every arm64 function that could be called from x64

code needs an alternative entry point, for when the
caller was x64.

• The alternative entry point is arm64 code for handling
the mode switch.

• Offset of alternative entry point specified as 32-bit int
in the 32 bits immediately before the function.

27

Contents of an alternative entry point

Inlined copy of code from x9

Unmarshall arguments from x64 CC (using x4 as SP)

Marshall arguments for arm64 CC

Call x9

Unmarshall results from arm64 CC

Marshall results for x64 CC

Tailcall __os_arm64x_dispatch_ret

Either Or

28

Contents of __os_arm64x_dispatch_ret

Advance x9 to next instruction

Does x9 point just after call x16?

Set LR to x9

Pop from stack into LR

Return (to LR)

Set x4 to SP

Forcibly align SP

Tailcall x9’s alternative entry point

Set x9 to LR

Does x9 point at x64 code?

Emulate one instruction at x9

Yes Yes

No No

29

Agenda

1. General landscape of emulating x64 on arm64.

2. What is Arm64EC?

3. Lessons learnt porting LuaJIT to Arm64EC. ←

30

Impact on LuaJIT: losing 5 GPRs & 16 FPRs
1. Interpreter doesn’t care about losing x13-14, v16-31.

2. Losing x23-24 mitigated via some ~zero cost tricks.

3. Losing x28 really annoying, requires spills/restores.

4. Easy to make JIT compiler avoid the lost registers,

though likely impact on speed of generated code.

31

Impact on LuaJIT: mode switches
C compiler handles most of them. Three arm64 to x64 it doesn’t:

1. Interpreter opcode for calling Lua API C functions.

2. Interpreted FFI calls to arbitrary functions.

3. JIT-compiled FFI calls to functions with “simple” types.

One x64 to arm64 it doesn’t:

1. FFI callbacks with “simple” types.

32

How Arm64EC LuaJIT interprets FFI calls
Is target arm64 code?

Marshall arguments for arm64 CC

Call target function

Yes No
Marshall arguments for x64 CC

Works fine in practice, unless target is a typeless
arm64 function relying on presence of x10. Could fix
this, but the need has not yet arisen.

33

Call emulator (with target function)

Unmarshall results from arm64 CC Unmarshall results from x64 CC

How Arm64EC LuaJIT compiles FFI calls
Marshall arguments for arm64 CC

Put target function in x11, generic exit thunk in x10, type signature in x15

Call __os_arm64x_dispatch_icall (swizzles x9/x10/x11 as appropriate)

Call x11

Works fine in practice, unless target is a typeless
arm64 function relying on presence of x10 that also
happens to trash x15.

34

Impact on LuaJIT: performance

35

Windows on Arm VM under hypervisor:

• Windows native arm64: 37 seconds.

• Windows emulated x64: 106 seconds (+186%).

• Windows Arm64EC: 38 seconds (+3%).

Bonus problem: function hooking
1. Linux has LD_PRELOAD.

2. macOS / iOS have DYLD_INSERT_LIBRARIES.

3. Windows has … ad-hoc x64 machine code patching.

Casualty: Wrap public arm64 functions in an x64 shell
that does nothing except a tail call to the arm64 code.
__os_arm64x_dispatch_icall can skip over the shell.

36

