
Panda3DS
Climbing the tree of 3DS emulation

George Poniris Electrical & Computer Eng. Undergrad @ NTUA
gponiris@pandasemi.co

Paris Oplopoios Information & Electronic Eng. Undergrad

FOSDEM 2024 – Emulation Track

parisoplop@pandasemi.co

Davit Margarian Electrical & Computer Eng. @ UC San Diego
mar@pandasemi.co



What is Panda3DS?
Panda3DS is a Nintendo 3DS emulator for Windows, MacOS, 

Linux and Android. Some goals and aspirations include:

• Providing end-users with a pleasant experience playing their 3DS games on all their 
devices

• Creating a portable, modern, easy-to-maintain codebase
• Exploring new possibilities in 3DS emulation: 

Virtualization, ubershaders, and more
• Researching the 3DS software and hardware architecture
• Expanding the red panda cult
• Aiding homebrew devs in writing their own 3DS software
• Fun (...mostly)!



A peek at Panda3DS

The SDL frontend
panda-sdl

The Qt frontend
panda-qt

The Android version 
pandroid



Agenda

Hardware 
Architecture

CPUs
(There's too 

many)

GPU The 
PICA200

Audio DSP
XpertTeak

The Rest of 
the System

3DS 
Software 

Stack

Nintendo’s 
Horizon OS

The 3DS 
Userland

Emulating 
the 3DS

The 
“Levels” of 
Emulation

DiMiculties 
& Points of 

Interest

New & 
Unexplored 

Territory



First glance 3DS hardware

Source copetti.org

https://www.copetti.org/writings/consoles/nintendo-3ds/


The System-on-a-Chip SoC
The Nintendo 3DS is capable of natively running Game Boy Advance, 

Nintendo DS, and 3DS software. Most of the hardware used to achieve this 
resides in a small System-on-a-Chip, named “CPU CTR”

Fun facts:
• Many people don’t know the 3DS can run GBA 

games natively, since only those who were part of 
Nintendo’s “Ambassador program” could use this 
feature officially.

Nowadays, there’s an open-source interface for 
running GBA games natively, called open_agb_firm.

• Diffused by Panasonic in Japan on their 45nm 
process

https://github.com/profi200/open_agb_firm


Inside the SoC: The ARM11
Running most of the code in 3DS mode

Original 3DS

New 3DS

268 MHz268 MHz

804 MHz* 804 MHz* 804 MHz* 804 MHz*



Inside ARM11 MPCore

ARMv6K Architecture
32-bit JazelleThumbARM

3 Instruction Sets

VFPv2
Vector Floating Point

Faster processing of 
single/double precision

floats

Media Instructions
for Video/Audio

MMU
for running multitasking 

OSes

16KB
I-Cache

16KB 
D-Cache

Branch 
Predictor

Out-of-Order
Completion

for some 
instructions

+ Multicore Coherency & More



Making use of the multiple ARM11 cores
Aiming to make good use of the multicore ARM11, the 3DS OS allocates different 
tasks to each core

Core 0 Appcore

Runs userland apps
including games & 
system apps

Core 1 Syscore

Dedicated to OS. Runs 
many processes often 
known as “services” 
used to interface with 
world.
Apps can borrow some 
syscore compute time.

Core 2 New 3DS Only

Reserved for “QTM”, the 
camera-based head 
tracking service.

Core 3 New 3DS Only

Available as another 
Appcore.



Inside the SoC: The ARM9 & ARM7

ARM946E-S
ARMv5TE Architecture
32-bit

Same model as
DS/DSi ARM9

66 MHz in DS 
compatibility mode

133 MHz in DSi mode 
and 3DS mode

3DS Mode

manages storage and 
cryptography hardwa

re
Cartridge/NAND/SD

DS/DSi 
Compatibility Mode

ARM7TDMI-S
ARMv4T Architecture
32-bit

Same model as
GBA/DS/DSi ARM7

33 MHz in DS 
compatibility mode

16 MHz in GBA 
compatibility mode

DS/DSi 
Compatibility Mode

GBA 
Compatibility Mode

Disabled in 3DS 
Mode



64b AXI Main Bus
via Snoop Control Unit for 

inter-ARM11 cache coherency

In
te

rr
up

t D
is

tr
ib

ut
io

n 
C

on
tr

ol
le

r

CPU Intercommunication

”PXI” FIFO
64b FIFOs, 

bidirectional

”IPC” FIFO
64b FIFOs, 

bidirectional



DMP PICA200 Everyone’s favourite GPU
Me?

Nintendo’s first 
off-the-shelf GPU 
in a handheld.

OpenGL 
ES 1.1

Compatible 

Features *

Custom Programmable Shaders

Vertex Shaders Geometry 
Shaders

Fragment Lighting
Per-pixel 

fixed-function effects

Hardware Shadow 
Mapping & Texture 

Projection

+ More Procedural 
Graphics Effects

(DMP MAESTRO 
technology)

D
M

P 
 M

AE
ST

RO

*But most 3DS games don’t actually use GLES



PICA200 A Vertex Shader





The pixel pipeline
Modern GPUs use programmable shaders to fill in pixels (fragments). 

PICA200 uses a configurable pipeline.

Rasterizer
Triangle Setup → 
Fragment issue

Texture Unit
• 2D
• Shadow
• Cube
• Projective

Texture Unit
• 2D

Texture Unit
• 2D

Texture Unit
• 2D

• Procedural

Colour
Combiner

Colour
Combiner

Colour
Combiner

Colour
Combiner

Colour
Combiner

Colour
Combiner

Vertex 
Colors

Lighting
Data

Vertex data from 
programmable 

shader units

Post 
Processing

Vertex 
Colors

Lighting
Data

Vertex 
Colors

Lighting
Data

Vertex 
Colors

Lighting
Data

Vertex 
Colors

Lighting
Data

Vertex 
Colors

Lighting
Data

+ Other effects like blending



The beanstalk texture is mixed with the lighting from a light source using the 
colour combiner – creating a sheen.

On the leaf Kirby is standing on, there’s a darkening gradient from left to right.

Using the Color Combiners



Showing o: the PICA

Captain Toad: Treasure Tracker, a game known for being 
clever with all sorts of lighting and shadow effects



Showing off the PICA

The Legend of Zelda: Ocarina of Time 3D
using the PICA’s fog rendering hardware

Also texture compression with ETC1 and ETC1A4!



Showing off the PICA

Mario and Luigi: Paper Jam generates the seawater via 
procedurally-generated textures



Showing off the PICA

Super Mario 3D Land uses all sorts of features, such as stencil testing, 
logic ops, good usage of lighting, GPU command lists that invoke other 

command lists, and more



The XpertTeak DSP
More Processors! The 3DS also has a Digital Signal Processor for audio.

It’s the same model as the DSi DSP but it’s used far more.

Most games shipped a common DSP firmware which includes:

Support for up to
24 audio channels Multiple 

Audio 
Encodings

• PCM8 
• PCM16 
• ADPCM

Mono 
Input

Stereo 
Input

Stereo Output

AAC Audio 
Decoder

Used in games like 
Pokémon X/Y

Effects

• Reverb
• Delay
• Filters

One-pole & 
Biquad



Teak architecture

Signal Processing 
Instructions

Plenty for multiply, 
multiply-add, division, 

etc.

16-bit Bytes
Instead of the typical 8b

ARM11 
Synchronization

With data exchange and 
a semaphore register

256KB
Instruction

Memory

256KB 
Data 

Memory
Loop Instructions

Supporting tight loops

With awful complicated instruction encodings



128 / 256* MB FCRAM
64-bit “Fast Cycle RAM” 

Built by Fujitsu

6 / 10 MB of VRAM
Inside the chip

One-Time-
Programmable Memory

Stores console-unique 
keys

Arm CoreLink DMA
programmable 

DMA engine

Hardware 
Cryptography Engine
AES / SHA / RSA / RNG

eMMC NAND
Stores system data

SD Card Slot
Expandable Game 

Storage

WiFi Controller

Xtensa CPU

GBA & DSi Hardware
for game 

compatibility Motion Sensors
Gyroscope & 

Accelerometer

2 LCDs

Bottom Display 
Resistive Touch

PDC PICA Display 
Controller

Cameras
2 Back Cameras

Front Camera

IR Transceiver
for Amiibo & 
CirclePadPro

IR Front LED
for New 3DS Face 

Tracking

NFC Reader
for New 3DS Amiibo 

Support

Microcontroller
For extra IO & Power 

Management



Software stack!



The 3DS OS: Horizon®

We’ll look at Horizon on ARM11 Syscore
& Horizon on ARM9 for Security & I/O

To tame this hardware,
We have Nintendo’s beautifully architected operating system



Getting a firm grasp of FIRMs
The 3DS comes with multiple different “firmware” programs running on the ARM cores with low-level 

control of the underlying hardware:

SAFE_FIRM

Older, bare-bones 
version of 

NATIVE_FIRM for 
recovery

Use a button combo 
to enter Safe Mode 

with 
System Updater

TWL_FIRM

ARM7
• Downclocked to 

DS(i) speeds
• Runs game code

Internal DSi 
Hardware

ARM9
• Downclocked to 

DS or DSi speeds
• Runs game code

Runs DS or DSi Games 
Natively

AGB_FIRM

ARM7
• Downclocked to 

GBA speeds
• Runs game code

Internal GBA 
Hardware

Runs GBA Games 
Natively

NATIVE_FIRM

ARM11
• Runs Userland
• Majority of OS 

code

ARM9
• Cryptography
• Cartridge & SD I/O

Runs 3DS Games 
Natively: “3DS Mode”



A microkernel architecture
The kernel is the core of an OS. The 3DS ARM11 kernel is 
called kernel11.

k
e
r
n
e
l
1
1

Memory 
Management

Map Memory to 
processes

&
configure their 

access 
permissions

Process & 
Thread 

Management

Creation, 
multithreading 

primitives, 
Lifecycling

Service & 
Process Inter-

communication

Via the sync 
request API and 
shared memory

Kernel calls are 
performed with the Arm 
SVC (Supervisor Call) 
instruction.

An ARM assembly function 
for calling the exitThread

SVC.



HorizonOS services

Receive Output Buffer
Function-Specific Output Data Potential Error Codes

Send Request To Service
Call SendSyncRequest SVC with service handle & bufer

Set Up The Parameter Buffer
with the function to call and necessary parameters

Service Handle
Request a service handle from “Service Manager”



Some important services
FS

Filesystem IO for 
Cartridge, SD, Save 

Data & more

HID
Interface with many 

input devices like
gamepad, motion, ...

GSP
GPU & Display 

Communication

DSP
Communication with 

Audio DSP

CFG
Read system 

configuration data 
like console model & 

region

AC / HTTP / SSL /
SOC

Networking Tasks

APT
Inferface with 

system applets & 
manage some app 

controls 

CAM / MIC / NFC
Camera, Mic, & NFC 

Input

Function that asks the HID
service to enable the 

gyroscope 

adapted from libctru



Process9
Unlike ARM11, the ARM9 in 3DS mode handles all its tasks in one big process 
called Process9.

Cryptography
Data encryption & 

decryption with crypto 
hardware

Device I/O
Talks to various 

devices like
Cartridge / SD Card / 

...

Overcomplicated C++
That reverse engineers 

hate :(

Really big



A lil’ breather
Some live demos!



I knew this would fail
Here's a video instead



This failed too?
Here's a video instead



Emulation!
finally...



High & Low-Level Emulation
• HLE Reimplemen(ng parts of the emulated system’s so6ware in our own code, to avoid 

emula(ng the hardware needed to run said so6ware.

Eg. An LLE Audio DSP is expensive to emulate performance-wise

HLE implementation of FS service 
function that returns if an SD card is 
inserted

We avoid emulating the complex SD 
hardware interface.

Audio DSP Hardware

DSP Firmware

LLE & Actual Device

C++ model 
reimplementing DSP
firmware features

DSP Firmware
Compatible 

Interface

HLE

KernelFor the 3DS, we can HLE the OS: Services Process9 &  ...



As an Emudev What parts to LLE, what to HLE?
LLE

Tedious to implement so 
much hardware

That much hardware 
reduces performance and 
is error-prone.

Beneficially, it can run any 
3DS software incl. 
baremetal firms like
3DS Linux / GodMode9 

HLE

Tedious to implement so 
many services

Performant but still error-
prone. 

Many elements left to 
reverse engineer. 

Hybrid

We can HLE kernel11 & 
process9

We can LLE most OS 
services.

Balance
• Minimizing work
• Improving Performance
• Maintaining Accuracy



As an Emudev: The CPU

Just-in-Time (JIT) Recompilation
Convert ARM code to host CPU code. This is 
the most common solution.
Citra & Panda3DS both use the Dynarmic
library to perform Arm32 to x86 / Arm64

Ahead-of-Time (AOT) Recompilation 
(Potentially)
Recompile ARM code from the code section of 3DS 
executables to host CPU assembly ahead of time.

Interpreters
Loop and process CPU instructions 
in normal code. Slow, portable, 
good for a start but not for  
fullspeed emulation

Virtualization (Potentially)
On Arm32/Arm64 devices, 
virtualization could be used to 
execute 3DS code natively. An 
ongoing Panda3DS PR is aiming to 
add this.



As an Emudev: The GPU
Software Rendering

Draws emulated triangle on the CPU  in 
software.

Very slow but portable and simpler™

How can we speed it up?
• Multithreading drawing with several 

concurrent threads
• Recompilers Much like the CPU JIT, 

we can parse the PICA200 
confiuguration for a draw call and 
generate optimized rasterization code 
at runtime.

Hardware Rendering

Draws on the GPU via a graphics API like 
OpenGL / Vulkan / DirectX / Metal.
Much faster - suitable for gameplay.

Challenges
• Choosing the ideal API
• Ejicient & Correct Surface 

Management 
textures, color bufers, depth bufer

• Many, many other problems to solve



Emulating PICA shaders

Interpreter

Simple 
Too slow

JIT on CPU

Decent Performance
But could be better

CPU JIT

Recompiling Shaders for GPU

Good Performance
Only for HW Rendering

Might not be possible for select 
PICA shaders



Emulating the PICA pixel pipeline
Specialized Shaders

Compile a specialized 
shader for each PICA pixel 
pipeline configuration.

Low GPU Usage

However lots of time is 
spent compiling shaders,
Causing stutters.

Most common approach, 
currently WIP in 
Panda3DS

Ubershaders

Include an entire 
“emulator” for the pixel 
pipeline inside a GPU 
fragment shader.

Higher GPU usage but no 
compilation stutter.

Works well on modern PC 
GPUs but struggles on 
mobile GPUs.

Implemented in 
Panda3DS

Hybrid emulation

Compile specialized 
shaders in the 
background. The 
ubershader is used for 
each draw call until the 
relevant shader is ready.

Good performance with 
minimum stutter.

Works well on all GPUs. 
Higher code complexity.

What Panda3DS wishes 
to achieve.



As an Emudev Audio DSP
LLE

How do we optimize it?
• Recompiling firmware
• AOT Compilation

Teakra
An emulator / assembler / 
disassembler for the Teak 
DSP used in Citra & 
MelonDS

HLE

Improving current DSP 
reverse engineering efforts
By making test ROMS & 
RE tooling.

Techniques for optimized 
audio mixing
SIMD / Multithreading / ...



Exploring new territory in 3DS emulation

Panda3DS comes with Lua scripting, including a text editor, so 
developers can make all sorts of scripts & mods, testing them fully 
within the app!



Exploring new territory in 3DS emulation

A Panda3DS dev branch running 
CTRAging, a factory test program 
some other emulators may struggle 
with

Panda3DS running on Wii, via HTTP 
streaming



Exploring new territory in 3DS emulation

Revolutionary UI (Has panda icons)

Play on Discord with all of your friends!



Star us on GitHub
Thx

Panda Πάντα熊猫Панда Պանդա पांडा팬더 ادنابلا パンダ

panda3ds.com


