ORACLE

.
=

Foreign Function & Memory API
A (quick) peek under the hood

Maurizio Cimadamore
Compiler Architect

Beyond “Pure Java”

Native interop frown upon — “Pure Java” used to be the goal
« “Use native methods judiciously” (J. Bloch, Effective Java 3™ edition)

While there are many great Java libraries, there are increasingly many important native-only libraries
« Off-CPU computing (Cuda, OpenCL)
* Machine Learning (Blis, ONNX, Tensorflow)
 Graphics processing (OpenGL, Vulkan, DirectX)
 Others (CRIU, fuse, io_uring, OpenSSL, V8, ucx)

These libraries won't be, and don't need to be, rewritten in Java

2 Copyright © 2024, Oracle and/or its affiliates

Java Native Interface

The Java Native Interface (JNI) can be used to access to functionalities not available in JDK

JNI allows classes to declare native methods
* Native methods do not have a body (analogy: abstract methods)
* Implementation written in native languages such as C or C++ (or even assembly!)

Problems
* Native-first programming model, brittle combination of Java and C
» Expensive to maintain and deploy
* Passing data to/from JNI is cumbersome and inefficient (more on that later)

3 Copyright © 2024, Oracle and/or its affiliates

JNI and data

Native functions often need to exchange (off-heap) data with Java programs
* JNI calling conventions only support primitive types and Java objects

Direct buffers allow developers to allocate and access off-heap memory
 Can be passed to native methods (with some overhead)
 Can be accessed directly from C/C++ code (using JNI functions)

Problems
* No way to free/unmap
* Limited addressing space (2GB)
* Inflexible addressing options (either sequential or offset-based)

4 Copyright © 2024, Oracle and/or its affiliates

JNI workflow

@tiva libr@

5 Copyright © 2024, Oracle and/or its affiliates

JNI workflow
INI

Native methods

javac —h

/
e S
0 € Implementation
Y gce/clang
Native Ubr@

6 Copyright © 2024, Oracle and/or its affiliates

Enter Panama

We need a new Java-first programming model for non-Java resources (both code and data)

Replace JNI with a more direct, pure Java paradigm

Replace direct buffers with a more safe, efficient and future-proof API

Simplify building and distributing Java bindings for popular native libraries

Allow for existing frameworks (JNA, JNR, JavaCPP, ...) to be built on top of more solid foundations

7 Copyright © 2024, Oracle and/or its affiliates

Enter Panama

1A 1 ™ fFe . 11 c

JEP 454: Foreign Function & Memory API I non-Java resources (both code and data)

Owner Maurizio Cimadamore jlgm

Type Feature

Scope SE nt and future-proof API
oo Sompleted s for popular native libraries

Component core-libs/java.lang.foreign
Discussion panama dash dev at openjdk dot org
Relates to |EP 442: Foreign Function & Memory API (Third Preview)
Reviewed by Alex Buckley, Jorn Vernee
Endorsed by Alan Bateman
Created 2023/06/22 09:36
Updated 2023/12/06 17:32
Issue 8310626

PP, ...) to be built on top of more solid foundations

Ssummary

Introduce an APl by which Java programs can interoperate with code and data
outside of the Java runtime. By efficiently invoking foreign functions (i.e., code
outside the VM), and by safely accessing foreign memory (i.e., memory not
managed by the JVM), the APl enables Java programs to call native libraries and
process native data without the brittleness and danger of JNI.

8 Copyright © 2024, Oracle and/or its affiliates

Enter Panama

1 P |] 1 (] . AN

JEP 454: Foreign Function & Memory API

‘r non-J

sSu

Intr
out
out
ma
pro

9

JEP 460: Vector API (Seventh Incubator)

owner

Type

Scope
Status
Release
Component
Discussion
Effort
Duration
Relates to
Reviewed by
Endorsed by
Created
Updated
Issue

Summary

Introduce an API to express vector computations that reliably compile at runtime to
optimal vector instructions on supported CPU architectures, thus achieving

Paul Sandoz

Feature

JDK

Closed / Delivered

22

core-libs

panama dash dev at openjdk dot org
X5

x5

JEP 448: Vector API (Sixth Incubator)
Vladimir lvanov

John Rose

2023/09/08 17:29

2023/11/08 03:26

8315945

performance superior to equivalent scalar computations.

Babylon

Babylon's primary goal is to extend the reach of Java to foreign programming
models such as sQL, differentiable programming, machine learning models, and
GPUs. Babylon will achieve this with an enhancement to reflective programming in
Java, called code reflection.

This Project is sponsored by the Core Libraries and Compiler Groups.

Summary

Focusing on the GPU example, suppose a Java developer wants to write a GPU
kernel in Java and execute it on a GPU. The developer's Java code must, somehow,
be analyzed and transformed into an executable GPU kernel. A Java library could
do that, but it requires access to the Java code in symbolic form. Such access is,
however, currently limited to the use of non-standard APls or to conventions at
different points in the program's life cycle (compile time or run time), and the
symbolic forms available (abstract syntax trees or bytecodes) are often ill-suited to
analysis and transformation.

Copyright © 2024, Oracle and/or its affiliates

Accessing native memory

A memory segment provides access to a contiguous region of memory

Two kinds of memory segments
* Heap segments — access to memory inside the Java heap (e.g. Java array)

» Native segments > access to memory outside the Java heap (e.g. malloc/mmap)

Access to all memory segments is governed by the following characteristics
* Size > no out-of-bounds access

 Lifetime —> no use-after-free
» Confinement (optional) —> no data races

10 Copyright © 2024, Oracle and/or its affiliates

Accessing native memory

// struct Point2d {

// double x;

// double y;

// } point = { 3.0, 4.0 };

MemorySegment point = Arena.ofAuto().allocate(8 * 2);

point.set(ValuelLayout.JAVA DOUBLE, @, 3d);
point.set(ValuelLayout.JAVA DOUBLE, 8, 4d);

11 Copyright © 2024, Oracle and/or its affiliates

Automatic memory management

Java features automatic memory management, using a garbage collector (GC)

Programs create objects (new), the GC “frees” them (e.g. recycles them) when no longer needed
« Concept of reachability
* One of the corner stones of Java's success!

Direct buffers rely on GC to perform off-heap memory deallocation, but there’s issues:
A small on-heap Java buffer instance can hold on to a big chunk of off-heap memory
» Materializing reachability graphs is expensive (more so in low-latency collectors)
» GC cannot track usage of off-heap resources from native code

Challenge: provide deterministic deallocation in language built on automatic memory management!

12 Copyright © 2024, Oracle and/or its affiliates

Arena-based memory management

An arena models the lifecycle of one or more memory segments

« All segments allocated in the arena share the same lifetime

Many kinds of arenas, providing different deallocation/access policies

* Global — unbounded lifetime

« Automatic — automatic bounded lifetime
 Confined — explicit bounded lifetime

» Shared > explicit bounded lifetime

Strong safety guarantee: no use-after-free

multi-thread access
multi-thread access
single-thread access
multi-thread access

* When the arena is closed, all its segments are invalidated, atomically

 Closing a shared arena triggers a thread-local handshake (JEP 312)

Clients can define custom arenas to support efficient allocation strategies

13

Copyright © 2024, Oracle and/or its affiliates

Arena-based memory management

Flexibility - Safety

®
Java

C

14 Copyright © 2024, Oracle and/or its affiliates

Freeing memory with arenas

// struct Point2d {

// double x;

// double y;

// } point = { 3.0, 4.0 };

try (Arena offHeap = Arena.ofConfined()) {
MemorySegment point = offHeap.allocate(8 * 2);
point.set(ValuelLayout.JAVA DOUBLE, @, 3d);
point.set(ValuelLayout.JAVA DOUBLE, 8, 4d);

} // free

15 Copyright © 2024, Oracle and/or its affiliates

Memory layouts

Often memory access occurs in a structured fashion (point.y)
« Manual offset computation is tedious and error-prone

Memory layouts describe contents of a memory region programmatically
 Layouts can be queried to obtain sizes, alignments and var handles

More declarative code, less places for bugs to hide!

struct Point2d { MemoryLayout.structLayout(
double x; ValuelLayout.JAVA DOUBLE.withName(“x”),
double y; ValuelLayout.JAVA DOUBLE.withName (“y”)
}s)s

16 Copyright © 2024, Oracle and/or its affiliates

Structured access with layouts

// struct Point2d {

// double x;

// double vy;

// } point = { 3.0, 4.0 };

MemorylLayout POINT 2D = Memorylayout.structLayout(
Valuelayout.JAVA DOUBLE.withName(“x”),
ValuelLayout.JAVA DOUBLE.withName(“y”)

)3

VarHandle xHandle
VarHandle yHandle

POINT 2D.varHandle(PathElement.groupLayout(“x”));
POINT 2D.varHandle(PathElement.groupLayout(“y”));

try (Arena offHeap = Arena.ofConfined()) {
MemorySegment point = offHeap.allocate(POINT 2D);
xHandle.set(point, oL, 3d);
yHandle.set(point, 0L, 4d);

} // free

17 Copyright © 2024, Oracle and/or its affiliates

Linking native functions

The native linker implements the calling conventions of the platform in which the JVM runs

Provides two core capabilities:
* Link a library symbol into a downcall method handle, callable from Java

« Obtain an upcall stub, used to invoke a method handle from native code

The native linker builds on what we have seen so far
« Memory layouts used to describe signatures of C functions
« Memory segments used to pass pointers/structs/unions to C functions
 Arenas used to model the lifetime of upcall stubs/loaded libraries

18 Copyright © 2024, Oracle and/or its affiliates

Anatomy of a native call

struct Point2d {
double x;
double y;

}s
extern double distance(struct Point2d p);
void main(void) {

struct Point2d p = { 3.9, 4.0 };
distance(p);

19 Copyright © 2024, Oracle and/or its affiliates

Anatomy of a native call
Linux x64

Passing Once arguments are classified, the registers get assigned (in left-to-right
order) for passing as follows:

1. If the class is MEMORY, pass the argument on the stack.

2. If the class is INTEGER, the next available register of the sequence $rdi,
%rsi, 3rdx, $rcx, 3r8 and 3r9is used_ﬂ

3. If the class is SSE, the next available vector register is used, the registers
are taken in the order from $xmm0 to $xmm7.

4. TIf the class 1s SSEUP, the eightbyte is passed in the next available eightbyte
chunk of the last used vector register.

5. If the class is X87, X87UP or COMPLEX_X87, it is passed in memory.

void main(void) { movsd xmm@, QWORD PTR .LCO[rip]
struct Point2d p = { 3.0, 4.0 }; movsd xmml, QWORD PTR .LC1[rip]
distance(p); call distance

20 Copyright © 2024, Oracle and/or its affiliates

we weo

w

Anatomy of a native call
Windows x64

The following table summarizes how parameters are passed, by type and position from the left:
Parameter type fifth and higher fourth third second leftmost
floating-point stack XMM3 XMM2 XMM1 XMMO
integer stack R9 R8 RDX RCX
Aggregates (8, 16, 32, or 64 bits) and __mé4 stack R9 R8 RDX RCX
Other aggregates, as pointers stack R9 R8 RDX RCX
__mi28, as a pointer stack R9 R8 RDX RCX
void main(void) { movups xmm@, XMMWORD PTR p$[rsp]
struct Point2d p = { 3.0, 4.0 }; movdqu XMMWORD PTR $T1[rsp], xmm@
distance(p); lea rex, QWORD PTR $T1[rsp]
} call distance

21 Copyright © 2024, Oracle and/or its affiliates

Downcall method handles

// extern double distance(struct Point2d p);
MemorySegment distanceAddress = SymbolLookup.loaderLookup()
.lookup(“distance”).get();
MethodHandle distanceHandle = Linker.nativelinker().downcallHandle(
distanceAddress,
FunctionDescriptor.of (JAVA DOUBLE, POINT 2D));

try (Arena offHeap = Arena.ofConfined()) {
MemorySegment point = offHeap.allocate(POINT_2D);
xHandle.set(point, 0L, 3d);
yHandle.set(point, 0L, 4d);
double dist = distanceHandle.invokeExact(point); // 5d

22 Copyright © 2024, Oracle and/or its affiliates

Safety

Calling foreign functions is fundamentally unsafe
 Returned foreign pointers dereferenced incorrectly
* Provided function descriptors might be bad (wrong arity/types)
 Foreign code attempts to access already freed segments

Access to unsafe functionalities provided by restricted methods
* Part of the SE API, runtime warning generated on first access

« Warnings can be disabled by granting selected modules native access
--enable-native-access <module-name>

Restricted methods pave the way towards a safer Java/native interop
* JNI to follow, warnings will become errors
« Complete the “integrity by default” push started with Java 9

23 Copyright © 2024, Oracle and/or its affiliates

FFM API workflow

(Javaclient)

‘ FFM bindings u
Native library

24 Copyright © 2024, Oracle and/or its affiliates

FFM API workflow

(Javaclient) FFM bmqus
@ lach C Varhandles)

‘ FFM bindings u
Qnetion descript@ @m
Native library

25 Copyright © 2024, Oracle and/or its affiliates

Enter jextract

——

//,xab FFM bindings
: jextract

26 Copyright © 2024, Oracle and/or its affiliates

Qsort with jextract

// stdlib.h
typedef int (*__compar fn t) (const void *, const void *);
void gsort (void * base, size t _ nmemb, size t size, _ compar_fn_ t _ compar);

27 Copyright © 2024, Oracle and/or its affiliates

Qsort with jextract

$ jextract --target-package org.stdlib /usr/include/stdlib.h

28 Copyright © 2024, Oracle and/or its affiliates

Qsort with jextract

import static org.stdlib.stdlib _h.*;
try (Arena offHeap = Arena.ofConfined()) {
MemorySegment array = offHeap.allocateFrom(C_INT, ©, 9, 3, 4, 6, 5, 1, 8, 2, 7);
var compareFunc = _ compar_ fn t.allocate((al, a2) ->
Integer.compare(al.get(C_INT, ©), a2.get(C_INT, ©)), offHeap);

gsort(array, 10L, 4L, comparFunc);

int[] sorted = array.toArray(JAVA INT); // [©, 1, 2, 3, 4, 5, 6, 7, 8, 9]

29 Copyright © 2024, Oracle and/or its affiliates

Qsort with JNI

//qsort.java // libgsort.c
class gsort { #include "gsort.h"
static {
System.loadLibrary(“libgsort™); JavaVM* VM = NULL;
}

int java_cmp(const void *a, const void *b) {
static native void jni_gsort(int[] array); int vl = *((int*)a);
int v2 = *((int*)b);
static int jni_upcall_compar(int jo, int j1) {

return Integer.compare(jo, j1); INIEnv* env;
} (*VM) ->GetEnv(VM, (void**) &env, INI_VERSION_10);
}
jclass gsortClass = (*env)->FindClass(env, "gsort");
jmethodID methodId = (*env)->GetStaticMethodID(env, gsortClass, "jni_upcall_compar", "(II)I");
//qsort.h
#include <jni.h> return (*env)->CallStaticIntMethod(env, gsortClass, methodId, vi, v2);
/* Header for class gsort */ }
#ifndef _Included_qgsort INIEXPORT void JINICALL Java_gsort_jni_lgsort(INIEnv *env, jclass cls, jintArray arr) {
#tdefine _Included_gsort if (VM == NULL) {
/* (*env)->GetJavaVM(env, &VM);
* Class: gsort }
* Method: jni_gsort
* Signature: ([I)V jint* carr = (*env)->GetIntArrayElements(env, arr, 0);
*/ jsize length = (*env)->GetArraylLength(env, arr);
INIEXPORT void JINICALL Java_gsort_jni_1gsort gsort(carr, length, sizeof(jint), java_cmp);
(INIEnv *, jclass, jintArray); (*env)->ReleaseIntArrayElements(env, arr, carr, 0);
¥
tendif

30 Copyright © 2024, Oracle and/or its affiliates

Performance

gsort (lower is better)
1400

1200
1000
800

600

Time (ns/op)

400

200

mINI B FFM

31 Copyright © 2024, Oracle and/or its affiliates

Wrapping up

The FFM API provides safe and efficient access to native memory
» Deterministic deallocation, layout API to enable structured access

The FFM API provides general, direct and efficient access to native functions
* 100% Java, no need to write (and maintain!) native code

The FFM API provides the foundations of the Panama interop story
 Tooling (e.g. jextract) to generate layouts, var/method handles

32 Copyright © 2024, Oracle and/or its affiliates

A substrate for native access in the JVM

0 &
N/

Native access framework

Foreign Fuonction ¢ Memory AP P

v
@ve libroD

33 Copyright © 2024, Oracle and/or its affiliates

Adoption

2 n 2 £ ~
Apache Tomcat
1)) TORNADO VM \é‘ DataSketches @
Infinileap

34 Copyright © 2024, Oracle and/or its affiliates

Useful links

Try the FFM API in JDK 22!
e https://jdk.java.net/22/
* https://openjdk.org/jeps/454
* Subscribe to panama-dev@openjdk.org and send feedback!

Generate FFM bindings with the jextract tool
* https://jdk java.net/jextract/

Build the latest version of the FFM API & jextract
* https://github.com/openjdk/panama-foreign

* https://github.com/openjdk/jextract

35 Copyright © 2024, Oracle and/or its affiliates

https://jdk.java.net/22/
https://openjdk.org/jeps/454
mailto:panama-dev@openjdk.org
https://jdk.java.net/jextract/
https://github.com/openjdk/panama-foreign
https://github.com/openjdk/jextract

ORACLE

.
=

Foreign Function & Memory API
A (quick) peek under the hood

Maurizio Cimadamore
Compiler Architect

	All slides
	Slide 1: Foreign Function & Memory API
	Slide 2: Beyond “Pure Java”
	Slide 3: Java Native Interface
	Slide 4: JNI and data
	Slide 5: JNI workflow
	Slide 6: JNI workflow
	Slide 7: Enter Panama
	Slide 8: Enter Panama
	Slide 9: Enter Panama
	Slide 10: Accessing native memory
	Slide 11: Accessing native memory
	Slide 12: Automatic memory management
	Slide 13: Arena-based memory management
	Slide 14: Arena-based memory management
	Slide 15: Freeing memory with arenas
	Slide 16: Memory layouts
	Slide 17: Structured access with layouts
	Slide 18: Linking native functions
	Slide 19: Anatomy of a native call
	Slide 20: Anatomy of a native call
	Slide 21: Anatomy of a native call
	Slide 22: Downcall method handles
	Slide 23: Safety
	Slide 24: FFM API workflow
	Slide 25: FFM API workflow
	Slide 26: Enter jextract
	Slide 27: Qsort with jextract
	Slide 28: Qsort with jextract
	Slide 29: Qsort with jextract
	Slide 30: Qsort with JNI
	Slide 31: Performance
	Slide 32: Wrapping up
	Slide 33: A substrate for native access in the JVM
	Slide 34: Adoption
	Slide 35: Useful links
	Slide 36: Foreign Function & Memory API

