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The go scheduler



The pieces of the scheduler

● Status (Idle, running, syscall, gcstop)
● Current M
● Runnable goroutines
● Free gorotuines
● Other metadata

P (the Processor)

src/runtime/runtime2.go:609



The pieces of the scheduler

● Current goroutine
● Current P
● Other metadata

M (the Machine)

src/runtime/runtime2.go:526



The pieces of the scheduler

● Idle Ms
● Idle Ps
● Global runnable goroutines
● Global free goroutines
● Other metadata

Sched (the Scheduler)

src/runtime/runtime2.go:766



The pieces of the scheduler

● Stack (2048 bytes)
● Program counter
● Status
● Current M
● Wait reason
● Other metadata.

G (the Goroutine)

src/runtime/runtime2.go:407



All Ms

All Ps

All Goroutines

The whole picture

src/runtime/runtime2.go



The birth of a goroutine



The goroutine lifecycle

Idle Dead Runnable

Dead Runnable

src/runtime/proc.go:4241 (newproc)
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The life of a goroutine



The life of a goroutine

Runnable Running

Waiting Preempted Copystack

Syscall



Runnable to running

● Scheduler runs
● Find a goroutine to run
● Assigns it to the M
● Mark as Running
● Executes the code

src/runtime/proc.go:3331 (schedule)



Running to waiting

● Park itself
● Detach from M
● Run the scheduler

src/runtime/proc.go:364 (gopark)



waitReasonZero                                   // ""
waitReasonGCAssistMarking                     // "GC assist marking"
waitReasonIOWait                              // "IO wait"
waitReasonChanReceiveNilChan                  // "chan receive (nil chan)"
waitReasonChanSendNilChan                     // "chan send (nil chan)"
waitReasonDumpingHeap                         // "dumping heap"
waitReasonGarbageCollection                   // "garbage collection"
waitReasonGarbageCollectionScan               // "garbage collection scan"
waitReasonPanicWait                           // "panicwait"
waitReasonSelect                              // "select"
waitReasonSelectNoCases                       // "select (no cases)"
waitReasonGCAssistWait                        // "GC assist wait"
waitReasonGCSweepWait                         // "GC sweep wait"
waitReasonGCScavengeWait                      // "GC scavenge wait"
waitReasonChanReceive                         // "chan receive"
waitReasonChanSend                            // "chan send"  
waitReasonFinalizerWait                       // "finalizer wait"
waitReasonForceGCIdle                         // "force gc (idle)"
waitReasonSemacquire                          // "semacquire"
waitReasonSleep                               // "sleep"
waitReasonSyncCondWait                        // "sync.Cond.Wait"
waitReasonSyncMutexLock                       // "sync.Mutex.Lock"
waitReasonSyncRWMutexRLock                    // "sync.RWMutex.RLock"
waitReasonSyncRWMutexLock                     // "sync.RWMutex.Lock"
waitReasonTraceReaderBlocked                  // "trace reader (blocked)"
waitReasonWaitForGCCycle                      // "wait for GC cycle"
waitReasonGCWorkerIdle                        // "GC worker (idle)"                                                                                                                                                                                                  
waitReasonGCWorkerActive                      // "GC worker (active)"                                                                                                                                                                                                
waitReasonPreempted                           // "preempted"                                                                                                                                                                                                         
waitReasonDebugCall                           // "debug call"                                                                                                                                                                                                        
waitReasonGCMarkTermination                   // "GC mark termination"                                                                                                                                                                                              
waitReasonStoppingTheWorld                    // "stopping the world"

Running to waiting

src/runtime/runtime2.go:14



Running to waiting

● GC
● Mutex
● Semaphore
● Channel
● Sleep
● IO



Running to syscall and to running or runnable

● On every syscall
● entersyscall is executed (moving to Sycall state)
● The syscall is executed
● exitsyscall is executed (moving back to Running/Runnable)

src/runtime/proc.go:3825 (entersyscall)
src/runtime/proc.go:3920 (exitsyscall)



Running to copystack and back

● More stack needed
● Change Running to Copystack
● Grow the stack
● Change back to Running

src/runtime/stack.go:964 (newstack)



Waiting to runnable

● goready is called
● Is added to the queue
● Try to get a P

src/runtime/proc.go:390 (goready)



Waiting to runnable

● Reactivate a list of goroutines
● Mark all of them as runnable
● Wakes up all the Ps needed
● Add them to the queues

src/runtime/proc.go:3255 (injectglist)



Waiting to runnable

● Change to Waiting
● Donʼt need to wait
● Change to Runnable
● And then to Running rights away

src/runtime/proc.go:3487 (park_m)



Waiting to runnable

● Finding a goroutine
● Check in the netpoll
● Or wake up tasks for mark assist

src/runtime/proc.go:2672 (findRunnable)



Running to preempt, waiting and runnable
● Preempt flag is set
● Change to preempted
● Next GC change to waiting
● Do the GC scan
● Change to Runnable
● Add it back to the queue

src/runtime/preempt.go:104 (suspendG)
src/runtime/preempt.go:257 (resumeG)



The goroutine lifecycle

Runnable Running

Waiting Preempted Copystack

Syscall



Examples



channel

The channel example

data

src/runtime/chan.go:160



The channel example

channel

data

src/runtime/chan.go:160



The channel example

channel

data

src/runtime/chan.go:457



The channel example

channel

data
ready

data

src/runtime/chan.go:615



channel

The channel example

src/runtime/chan.go:615



channel

data

channel

The channel example

data

channel

data

channel

data
ready

data

channel



create

The waitgroup example

add 3

Spawn

Wait Group

src/sync/waitgroup.go:43



wait

The waitgroup example

Wait Group

src/sync/waitgroup.go:91



The waitgroup example

Wait Group



The waitgroup example

Wait Group



The waitgroup example

Wait Group
Ready

Done

src/sync/waitgroup.go:43



The waitgroup example

Wait Group



Wait Group Wait Group

Wait Group

create

The waitgroup example

Add 3

Spawn

wait

Ready Done

Wait Group



The death of a goroutine



The death of a goroutine

● A goroutine finish it work
● Change state to Dead
● Set most of the goroutine values to zero
● Disconnect the goroutine from the M
● Add the goroutine to the free list of the P
● Call the scheduler

src/runtime/proc.go:3616 (goexit0)



The whole life



The whole picture

All Ms

All Ps

All Goroutines



The whole lifecycle

Runnable Running

Waiting Preempted Copystack

SyscallDead

Idle



Summary



Illustrations
● CC-BY
● Created by Laura Pareja
● http://laurapareja.com

http://laurapareja.com


A gift from Mattermost



What is missing?

● The garbage collector
● The netpoll
● Cgo
● Mark assist
● Sysmon
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