

How are goroutines born?

 How are goroutines born?

The go scheduler

The pieces of the scheduler

● Status (Idle, running, syscall, gcstop)
● Current M
● Runnable goroutines
● Free gorotuines
● Other metadata

P (the Processor)

src/runtime/runtime2.go:609

The pieces of the scheduler

● Current goroutine
● Current P
● Other metadata

M (the Machine)

src/runtime/runtime2.go:526

The pieces of the scheduler

● Idle Ms
● Idle Ps
● Global runnable goroutines
● Global free goroutines
● Other metadata

Sched (the Scheduler)

src/runtime/runtime2.go:766

The pieces of the scheduler

● Stack (2048 bytes)
● Program counter
● Status
● Current M
● Wait reason
● Other metadata.

G (the Goroutine)

src/runtime/runtime2.go:407

All Ms

All Ps

All Goroutines

The whole picture

src/runtime/runtime2.go

The birth of a goroutine

The goroutine lifecycle

Idle Dead Runnable

Dead Runnable

src/runtime/proc.go:4241 (newproc)

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

All Ms

All Ps

All Goroutines

The whole picture

The life of a goroutine

The life of a goroutine

Runnable Running

Waiting Preempted Copystack

Syscall

Runnable to running

● Scheduler runs
● Find a goroutine to run
● Assigns it to the M
● Mark as Running
● Executes the code

src/runtime/proc.go:3331 (schedule)

Running to waiting

● Park itself
● Detach from M
● Run the scheduler

src/runtime/proc.go:364 (gopark)

waitReasonZero // ""
waitReasonGCAssistMarking // "GC assist marking"
waitReasonIOWait // "IO wait"
waitReasonChanReceiveNilChan // "chan receive (nil chan)"
waitReasonChanSendNilChan // "chan send (nil chan)"
waitReasonDumpingHeap // "dumping heap"
waitReasonGarbageCollection // "garbage collection"
waitReasonGarbageCollectionScan // "garbage collection scan"
waitReasonPanicWait // "panicwait"
waitReasonSelect // "select"
waitReasonSelectNoCases // "select (no cases)"
waitReasonGCAssistWait // "GC assist wait"
waitReasonGCSweepWait // "GC sweep wait"
waitReasonGCScavengeWait // "GC scavenge wait"
waitReasonChanReceive // "chan receive"
waitReasonChanSend // "chan send"
waitReasonFinalizerWait // "finalizer wait"
waitReasonForceGCIdle // "force gc (idle)"
waitReasonSemacquire // "semacquire"
waitReasonSleep // "sleep"
waitReasonSyncCondWait // "sync.Cond.Wait"
waitReasonSyncMutexLock // "sync.Mutex.Lock"
waitReasonSyncRWMutexRLock // "sync.RWMutex.RLock"
waitReasonSyncRWMutexLock // "sync.RWMutex.Lock"
waitReasonTraceReaderBlocked // "trace reader (blocked)"
waitReasonWaitForGCCycle // "wait for GC cycle"
waitReasonGCWorkerIdle // "GC worker (idle)"
waitReasonGCWorkerActive // "GC worker (active)"
waitReasonPreempted // "preempted"
waitReasonDebugCall // "debug call"
waitReasonGCMarkTermination // "GC mark termination"
waitReasonStoppingTheWorld // "stopping the world"

Running to waiting

src/runtime/runtime2.go:14

Running to waiting

● GC
● Mutex
● Semaphore
● Channel
● Sleep
● IO

Running to syscall and to running or runnable

● On every syscall
● entersyscall is executed (moving to Sycall state)
● The syscall is executed
● exitsyscall is executed (moving back to Running/Runnable)

src/runtime/proc.go:3825 (entersyscall)
src/runtime/proc.go:3920 (exitsyscall)

Running to copystack and back

● More stack needed
● Change Running to Copystack
● Grow the stack
● Change back to Running

src/runtime/stack.go:964 (newstack)

Waiting to runnable

● goready is called
● Is added to the queue
● Try to get a P

src/runtime/proc.go:390 (goready)

Waiting to runnable

● Reactivate a list of goroutines
● Mark all of them as runnable
● Wakes up all the Ps needed
● Add them to the queues

src/runtime/proc.go:3255 (injectglist)

Waiting to runnable

● Change to Waiting
● Donʼt need to wait
● Change to Runnable
● And then to Running rights away

src/runtime/proc.go:3487 (park_m)

Waiting to runnable

● Finding a goroutine
● Check in the netpoll
● Or wake up tasks for mark assist

src/runtime/proc.go:2672 (findRunnable)

Running to preempt, waiting and runnable
● Preempt flag is set
● Change to preempted
● Next GC change to waiting
● Do the GC scan
● Change to Runnable
● Add it back to the queue

src/runtime/preempt.go:104 (suspendG)
src/runtime/preempt.go:257 (resumeG)

The goroutine lifecycle

Runnable Running

Waiting Preempted Copystack

Syscall

Examples

channel

The channel example

data

src/runtime/chan.go:160

The channel example

channel

data

src/runtime/chan.go:160

The channel example

channel

data

src/runtime/chan.go:457

The channel example

channel

data
ready

data

src/runtime/chan.go:615

channel

The channel example

src/runtime/chan.go:615

channel

data

channel

The channel example

data

channel

data

channel

data
ready

data

channel

create

The waitgroup example

add 3

Spawn

Wait Group

src/sync/waitgroup.go:43

wait

The waitgroup example

Wait Group

src/sync/waitgroup.go:91

The waitgroup example

Wait Group

The waitgroup example

Wait Group

The waitgroup example

Wait Group
Ready

Done

src/sync/waitgroup.go:43

The waitgroup example

Wait Group

Wait Group Wait Group

Wait Group

create

The waitgroup example

Add 3

Spawn

wait

Ready Done

Wait Group

The death of a goroutine

The death of a goroutine

● A goroutine finish it work
● Change state to Dead
● Set most of the goroutine values to zero
● Disconnect the goroutine from the M
● Add the goroutine to the free list of the P
● Call the scheduler

src/runtime/proc.go:3616 (goexit0)

The whole life

The whole picture

All Ms

All Ps

All Goroutines

The whole lifecycle

Runnable Running

Waiting Preempted Copystack

SyscallDead

Idle

Summary

Illustrations
● CC-BY
● Created by Laura Pareja
● http://laurapareja.com

http://laurapareja.com

A gift from Mattermost

What is missing?

● The garbage collector
● The netpoll
● Cgo
● Mark assist
● Sysmon

References

● The Go source code
● Illustrated Tales of Go Runtime Scheduler:

https://www.youtube.com/watch?v=KxOwt6z0FvY
● Scheduling In Go:

https://www.ardanlabs.com/blog/2018/08/scheduling-in-g
o-part1.html

Conclusions

Let’s keep in touch

jespinog

jesus-espino

jespino

Let’s keep in touch

https://forms.gle/rAFKZwVM4U26JPyn6

