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Agenda

e Why the need for a DWARF-based stack walker in BPF
e Design of our stack walker

e Making it production ready

e |earningsso far

e [uture plans
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Native stack walker in BPF using DWARF: Why?

e Stack walking and history of frame pointers

e Current state of the world
o How hyperscalers solve this problem
o Recent discussions in Fedora mailing list - TL;DR: will be enabled Fedora 38,
late-april release
o Goruntime
o Apple ecosystem

o Simple Frame (previously known as CTF format)

e We want to support all the runtimes and distributions
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Native stack walker in BPF using DWARF

e |f not frame pointers then what?

o .eh_frame/debug_frame and DWARF CFI
o How ORC does it?
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Motivation

e |f not frame pointers then what?

e Perfand libunwind

o Security

o Performance
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Motivation

e |f not frame pointers then what?
e Perfand libunwind

e BPF advantages
o Higher safety

o Lower barrier of entry
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eh_frame

e Call Frame Information (CFl)
e Space efficient and versatile
e Encoded unwind tables

e CFlopcodes

e Two main layers

o State machine encoded in a VM - only need DW_CFA_remember_state and
DW_CFA_restore_state

o Aspecial opcode that contains another set of opcode
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Design

Userspace

Unwind tables generation

BPF management
Creating maps
Loading program
Writing in maps
Reading output
etc.

BPF maps

BPF program

Kernel
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Design

e Read the initial registers

o Instruction pointer $rip
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Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp

o Frame pointer $rbp
e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC
o Add instruction pointer to the stack
o Calculate the previous frame's stack pointer

o Update the registers with the calculated values for the previous frame
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Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp
o Frame pointer $rbp

e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC

o Add instruction pointer to the stack

o Calculate the previous frame's stack pointer

o Updates the registers with the calculated values for the previous frame

o Continue with the next frame - go back to adding instruction pointer
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Storing the unwind information

e 2 In-process, hijacking the process using ptrace(2) +
mmap(2) + mlock(2)

o Altering the execution flow of the program is a no-go
o We must lock this memory

o When to clean up?

o Sharing of memory is harder, accounting for our overhead is also harder
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Storing the unwind information

e BPF maps
o A<bytes, bytes> hash-table
o Always locked in memory, BPF_F_NO_PREALLOC is forbidden in tracing
programs
o We can reuse the same tables for multiple processes that share the

same mappings
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Storing the unwind information

libc mysql zlib systemd (unused)
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Storing the unwind information - sharding

shard ©

shard 1

shard 2

shard 3
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Storing the unwind information - sharding

systemd
shard 1
shard 2
shard 3
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Storing the unwind information - sharding

systemd

—

shard 1
shard 2 ‘\\\\\\\\\\\\\\\\\\\\\\\\__:>

shard 3

shard ©
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Storing the unwind information - sharding

process

pid

—_—

mapping ©
mapping 1

mapping 2

(The above are stored in BPF maps)

chunk ©

chunk 1
chunk 2

» shard

-  Jlow_index
- high_index
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Making our unwinder scale

e Unwind table for each executable mapping
o Skip table generation most of the time (~0.9% of our CPU cycles in prod)
e This is suspiciously similar to a bump allocator
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The unwinding process - in-depth

e pid
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The unwinding process - in-depth

e pid

o Do we have unwind information?
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The unwinding process - in-depth

e pid
o Do we have unwind information?

o Find mapping with our current instruction pointer
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The unwinding process - in-depth

e pid
o Do we have unwind information?
o Find mapping with our current instruction pointer
o Find chunk
o  We have the shard information
o Let'sfind the unwind info

o Binary search in the table of up to 250k entries (~8 iterations)
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The unwinding process - in-depth

e pid
o Do we have unwind information?
o Find mapping with our current instruction pointer
o Find chunk
o  We have the shard information
o Let'sfind the unwind info
o Binary search in the table of up to 250k entries (~8 iterations)

o Apply unwind action, add frame to stack-trace, continue with next frame
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The unwinding process - in-depth

e |fthe stackis “correct”

o We hash the addresses
o Add the hash toa map

o Bump acounter
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BPF challenges

e Memlock, being aware of memory usage

e BPF verifier woes

o Stack size: we rely on BPF maps to store state
o Program size:
m BPF tail calls to have bigger programs

m Bounded loops (and bpf_loop) if you don't need to support older kernels
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Performance in userspace

e Many Go APIs aren’t designed with performance in mind
o DWARF and ELF library in the stdlib

o binary.Read &binary.Write allocate in the fast path (!!)
e Profiling our profiler

o Lots of found opportunities

o Butthere's more work to do!
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Testing

e Thorough unit testing coverage for most of the core functions

e Snapshot testing for unwind tables @
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Testing - snapshot testing

=> Function
pe:
pc:
pe:
peC:
pc:
pC:

start:
2b450
2b451
2b454
2b461
2b6f2
2b6£f8

testdata @ c0d23d5

2b450, Function end: 2b809

cfa type:
cfa type:
cfa type:
cfa type:
cfa type:
cfa_ type:

2

rbp type:
rbp type:
rbp type:
rbp type:
rbp type:
rbp type:

0

1
1
1
1
1

cfa offset: 8
cfa offset: 16
cfa offset: 16
cfa offset: 16
cfa offset: 8
cfa offset: 16

rbp offset:
rbp offset:
rbp offset:
rbp offset:
rbp offset:
rbp offset:
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Testing - snapshot testing

write-dwarf-unwind-tables: build
make -C testdata validate EH_FRAME_BIN=../dist/eh-frame
make -C testdata validate-compact EH_FRAME_BIN=../dist/eh-frame

test-dwarf-unwind-tables: write-dwarf-unwind-tables
$(CMD_GIT) diff ——exit-code testdata/
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Takeaways

e De-risking the project
e Invest early and often in automated testing
e BPF programs must have kernel tests

e Measure, profile, test...

o but makesuretodoitin prod doitin prod, too!
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Takeaways - different environments

e Different environments can radically change the performance profile

o Different hardware

o Different configuration (pprof...)
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Different hardware - slow disks

[parca-agent] debug/elf.(*Section).Data
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syscall.Pread
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[parca-agent] runtime/inter

|[[kerne1.kallsyms]] entry_¢<

D.Keda:A 20
O e 340 ole
= 0/10.00
Adare Ox4aa030
BINC pArca-age
B ol [e o444 /040

t]

4\ Polar Signals



Different configuration - signals in prod

Do not enable pprof profiling until BPF program is loaded #12/6

FSNMerged® javierhonduco merged 1 commit into main from fix-sigprofs-interrupting-bpf-loading (L] 2 days ago

4\ Polar Signals



Different configuration - signals in prod

e GoO'ssignal-based profiler uses SIGPROF

e \Which interrupts our process’ execution

e Our BPF program is loaded and verified by the kernel
e GCetsinterrupted

e Libbpfretriesupto5times

e And then we crash!
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Other considerations

e Short-lived processes
e DWARF CFI vs our format
e Benchmarking the BPF code
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Other considerations - DWARF CFI vs our format

typedef struct {
ué4 pc;
ul6 _reserved_do_not_use;
u8 cfa_type;
u8 rbp_type;
s16 cfa_offset;
s16 rbp_offset;

} stack_unwind_row_t;
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Other considerations - DWARF CFI vs our format

typedef struct {
ué4 pc; // 9
ul6 _reserved_do_not_use; // 9
u8 cfa_type;
u8 rbp_type;
s16 cfa_offset;
s16 rbp_offset;

} stack_unwind_row_t;
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Other considerations - DWARF CFI vs our format

e \We support parsing every DWARF CFl opcode

e Onlycanunwind if

o Previous frame stack pointer (CFA) is based off the current stack pointer or frame

pointer + offset
o DWARF expressions in Procedure Linkage Tables (PLT) for CFA
o We are working on:
m CFA = any_register + offset

m Frame pointer defined by an known expression
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Other considerations - DWARF CFI vs our format

2 DWARF expressions account for the ~50% of what we've seen in

the wild (https://github.com/parca-dev/parca-agent/pull/1058)

CFA := Non stack/frame pointer + offset happens rarely

Some other instances that very rarely occur
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https://github.com/parca-dev/parca-agent/pull/1058

Other considerations —- BFP performance

e Walking stacks of a host running Postgres, CPython, Ruby (MRI)
applications (some with >90 frames)
o P30: 285ns
o P9@0: 370ns
o Max: 428ns

(kernel 6.0.18 with Intel i7-8700K (late 17) )
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What's coming

e Mixed unwinding mode

® armo64 support

e Enabling this feature by default

e Support for other runtimes (JVM, Ruby, etc)
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We @ OSS - contributors welcome!

e Everything we've talked about here is fully OSS

slejpee

o Userspace: Apache 2.0
o BPF:GPL
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References

e Blogpost:

https://wWwww.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers/

e Our project website: https://www.parca.dev/

o Agent: https://aithub.com/parca-dev/parca-agent

o BPF code: https://github.com/parca-dev/parca-agent/tree/main/bpf/cpu

e Previous talk at Linux Plumbers conference: https://www.voutube.com/watch?v=CrlrrSzvafg

e rbperf: https:/github.com/iavierhonduco/rbperf
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Thank you!
Vaishali <vaishali.thakkar@polarsignals.com>

Mastodon: @vaishali@hachyderm.io

Javier <javier@polarsignals.com>
Mastodon: @javierhc@hachyderm.io
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