4\ Polar Signals

Walking native

stacks in BPF //
without frame // §

pointers

shali Thakkar <vaishali.thakkar@polarsignals.com>

Vai
Javier Honduvilla Coto <javier@polarsignals.com> C

Agenda

e Why the need for a DWARF-based stack walker in BPF
e Design of our stack walker

e Making it production ready

e |earningsso far

e [uture plans

4\ Polar Signals

Native stack walker in BPF using DWARF: Why?

e Stack walking and history of frame pointers

e Current state of the world
o How hyperscalers solve this problem
o Recent discussions in Fedora mailing list - TL;DR: will be enabled Fedora 38,
late-april release
o Goruntime
o Apple ecosystem

o Simple Frame (previously known as CTF format)

e We want to support all the runtimes and distributions

4\ Polar Signals

Native stack walker in BPF using DWARF

e |f not frame pointers then what?

o .eh_frame/debug_frame and DWARF CFI
o How ORC does it?

4\ Polar Signals

Motivation

e |f not frame pointers then what?

e Perfand libunwind

o Security

o Performance

4\ Polar Signals

Motivation

e |f not frame pointers then what?
e Perfand libunwind

e BPF advantages
o Higher safety

o Lower barrier of entry

4\ Polar Signals

eh_frame

e Call Frame Information (CFl)
e Space efficient and versatile
e Encoded unwind tables

e CFlopcodes

e Two main layers

o State machine encoded in a VM - only need DW_CFA_remember_state and
DW_CFA_restore_state

o Aspecial opcode that contains another set of opcode

4\ Polar Signals

Design

Userspace

Unwind tables generation

BPF management
Creating maps
Loading program
Writing in maps
Reading output
etc.

BPF maps

BPF program

Kernel

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip

o Stack pointer $rsp

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp

o Frame pointer $rbp

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp

o Frame pointer $rbp
e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp

o Frame pointer $rbp
e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC

o Add instruction pointer to the stack

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp

o Frame pointer $rbp
e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC
o Add instruction pointer to the stack

o Calculate the previous frame's stack pointer

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp

o Frame pointer $rbp
e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC
o Add instruction pointer to the stack
o Calculate the previous frame's stack pointer

o Update the registers with the calculated values for the previous frame

4\ Polar Signals

Design

e Read the initial registers

o Instruction pointer $rip
o Stack pointer $rsp
o Frame pointer $rbp

e \While unwind_frame_count <= MAX_STACK_DEPTH

o Find the unwind table row for the PC

o Add instruction pointer to the stack

o Calculate the previous frame's stack pointer

o Updates the registers with the calculated values for the previous frame

o Continue with the next frame - go back to adding instruction pointer

4\ Polar Signals

Storing the unwind information

e 2 In-process, hijacking the process using ptrace(2) +
mmap(2) + mlock(2)

o Altering the execution flow of the program is a no-go
o We must lock this memory

o When to clean up?

o Sharing of memory is harder, accounting for our overhead is also harder

4\ Polar Signals

Storing the unwind information

e BPF maps
o A<bytes, bytes> hash-table
o Always locked in memory, BPF_F_NO_PREALLOC is forbidden in tracing
programs
o We can reuse the same tables for multiple processes that share the

same mappings

4\ Polar Signals

Storing the unwind information

libc mysql zlib systemd (unused)

4\ Polar Signals
EENNESSSNSWNNNNNNNmmm I

Storing the unwind information - sharding

shard ©

shard 1

shard 2

shard 3

4\ Polar Signals

Storing the unwind information - sharding

systemd
shard 1
shard 2
shard 3

4\ Polar Signals

Storing the unwind information - sharding

systemd

—

shard 1
shard 2 ‘__:>

shard 3

shard ©

4\ Polar Signals

Storing the unwind information - sharding

process

pid

—_—

mapping ©
mapping 1

mapping 2

(The above are stored in BPF maps)

chunk ©

chunk 1
chunk 2

» shard

- Jlow_index
- high_index

4\ Polar Signals

Making our unwinder scale

e Unwind table for each executable mapping
o Skip table generation most of the time (~0.9% of our CPU cycles in prod)
e This is suspiciously similar to a bump allocator

4\ Polar Signals

The unwinding process - in-depth

e pid

4\ Polar Signals

The unwinding process - in-depth

e pid

o Do we have unwind information?

4\ Polar Signals

The unwinding process - in-depth

e pid
o Do we have unwind information?

o Find mapping with our current instruction pointer

4\ Polar Signals

The unwinding process - in-depth

e pid
o Do we have unwind information?

o Find mapping with our current instruction pointer

o Find chunk

4\ Polar Signals

The unwinding process - in-depth

e pid
o Do we have unwind information?
o Find mapping with our current instruction pointer
o Find chunk

o We have the shard information

4\ Polar Signals

The unwinding process - in-depth

e pid
o Do we have unwind information?
o Find mapping with our current instruction pointer
o Find chunk
o We have the shard information

o Let'sfind the unwind info

4\ Polar Signals

The unwinding process - in-depth

e pid
o Do we have unwind information?
o Find mapping with our current instruction pointer
o Find chunk
o We have the shard information
o Let'sfind the unwind info

o Binary search in the table of up to 250k entries (~8 iterations)

4\ Polar Signals

The unwinding process - in-depth

e pid
o Do we have unwind information?
o Find mapping with our current instruction pointer
o Find chunk
o We have the shard information
o Let'sfind the unwind info
o Binary search in the table of up to 250k entries (~8 iterations)

o Apply unwind action, add frame to stack-trace, continue with next frame

4\ Polar Signals

The unwinding process - in-depth

e |fthe stackis “correct”

o We hash the addresses
o Add the hash toa map

o Bump acounter

4\ Polar Signals

BPF challenges

e Memlock, being aware of memory usage

e BPF verifier woes

o Stack size: we rely on BPF maps to store state
o Program size:
m BPF tail calls to have bigger programs

m Bounded loops (and bpf_loop) if you don't need to support older kernels

4\ Polar Signals

Performance in userspace

e Many Go APIs aren’t designed with performance in mind
o DWARF and ELF library in the stdlib

o binary.Read &binary.Write allocate in the fast path (!!)
e Profiling our profiler

o Lots of found opportunities

o Butthere's more work to do!

4\ Polar Signals

Testing

e Thorough unit testing coverage for most of the core functions

e Snapshot testing for unwind tables @

4\ Polar Signals

Testing - snapshot testing

=> Function
pe:
pc:
pe:
peC:
pc:
pC:

start:
2b450
2b451
2b454
2b461
2b6f2
2b6£f8

testdata @ c0d23d5

2b450, Function end: 2b809

cfa type:
cfa type:
cfa type:
cfa type:
cfa type:
cfa_ type:

2

rbp type:
rbp type:
rbp type:
rbp type:
rbp type:
rbp type:

0

1
1
1
1
1

cfa offset: 8
cfa offset: 16
cfa offset: 16
cfa offset: 16
cfa offset: 8
cfa offset: 16

rbp offset:
rbp offset:
rbp offset:
rbp offset:
rbp offset:
rbp offset:

4\ Polar Signals

Testing - snapshot testing

write-dwarf-unwind-tables: build
make -C testdata validate EH_FRAME_BIN=../dist/eh-frame
make -C testdata validate-compact EH_FRAME_BIN=../dist/eh-frame

test-dwarf-unwind-tables: write-dwarf-unwind-tables
$(CMD_GIT) diff ——exit-code testdata/

4\ Polar Signals

Takeaways

e De-risking the project
e Invest early and often in automated testing
e BPF programs must have kernel tests

e Measure, profile, test...

o but makesuretodoitin prod doitin prod, too!

4\ Polar Signals

Takeaways - different environments

e Different environments can radically change the performance profile

o Different hardware

o Different configuration (pprof...)

4\ Polar Signals

Different hardware - slow disks

[parca-agent] debug/elf.(*Section).Data

[parca-agent]

[r

[parca-agent] io

.ReadAtLeast

[parca-agent] runtime.makeslic

[parca-agent]

(s

[parca-agent]

io. (*SectionRe

[r

[parca-agent]

io.(*SectionR

(s

[parca-agent]

os.(*File) .Re

[

[parca-agent]

syscall.Pread

[

[parca-agent]

internal/poll

[1

[parca-agent]

syscall.pread

[

[parca-agent]

syscall.Sysca

[

[parca-agent] runtime/inter

|[[kerne1.kallsyms]] entry_¢<

D.Keda:A 20
O e 340 ole
= 0/10.00
Adare Ox4aa030
BINC pArca-age
B ol [e o444 /040

t]

4\ Polar Signals

Different configuration - signals in prod

Do not enable pprof profiling until BPF program is loaded #12/6

FSNMerged® javierhonduco merged 1 commit into main from fix-sigprofs-interrupting-bpf-loading (L] 2 days ago

4\ Polar Signals

Different configuration - signals in prod

e GoO'ssignal-based profiler uses SIGPROF

e \Which interrupts our process’ execution

e Our BPF program is loaded and verified by the kernel
e GCetsinterrupted

e Libbpfretriesupto5times

e And then we crash!

4\ Polar Signals

Other considerations

e Short-lived processes
e DWARF CFI vs our format
e Benchmarking the BPF code

4\ Polar Signals

Other considerations - DWARF CFI vs our format

typedef struct {
ué4 pc;
ul6 _reserved_do_not_use;
u8 cfa_type;
u8 rbp_type;
s16 cfa_offset;
s16 rbp_offset;

} stack_unwind_row_t;

4\ Polar Signals

Other considerations - DWARF CFI vs our format

typedef struct {
ué4 pc; // 9
ul6 _reserved_do_not_use; // 9
u8 cfa_type;
u8 rbp_type;
s16 cfa_offset;
s16 rbp_offset;

} stack_unwind_row_t;

4\ Polar Signals

Other considerations - DWARF CFI vs our format

e \We support parsing every DWARF CFl opcode

e Onlycanunwind if

o Previous frame stack pointer (CFA) is based off the current stack pointer or frame

pointer + offset
o DWARF expressions in Procedure Linkage Tables (PLT) for CFA
o We are working on:
m CFA = any_register + offset

m Frame pointer defined by an known expression

4\ Polar Signals

Other considerations - DWARF CFI vs our format

2 DWARF expressions account for the ~50% of what we've seen in

the wild (https://github.com/parca-dev/parca-agent/pull/1058)

CFA := Non stack/frame pointer + offset happens rarely

Some other instances that very rarely occur

4\ Polar Signals

https://github.com/parca-dev/parca-agent/pull/1058

Other considerations —- BFP performance

e Walking stacks of a host running Postgres, CPython, Ruby (MRI)
applications (some with >90 frames)
o P30: 285ns
o P9@0: 370ns
o Max: 428ns

(kernel 6.0.18 with Intel i7-8700K (late 17))

4\ Polar Signals

What's coming

e Mixed unwinding mode

® armo64 support

e Enabling this feature by default

e Support for other runtimes (JVM, Ruby, etc)

4\ Polar Signals

We @ OSS - contributors welcome!

e Everything we've talked about here is fully OSS

slejpee

o Userspace: Apache 2.0
o BPF:GPL

4\ Polar Signals

References

e Blogpost:

https://wWwww.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers/

e Our project website: https://www.parca.dev/

o Agent: https://aithub.com/parca-dev/parca-agent

o BPF code: https://github.com/parca-dev/parca-agent/tree/main/bpf/cpu

e Previous talk at Linux Plumbers conference: https://www.voutube.com/watch?v=CrlrrSzvafg

e rbperf: https:/github.com/iavierhonduco/rbperf

4\ Polar Signals

https://www.polarsignals.com/blog/posts/2022/11/29/profiling-without-frame-pointers/
https://www.parca.dev/
https://github.com/parca-dev/parca-agent
https://github.com/parca-dev/parca-agent/tree/main/bpf/cpu
https://www.youtube.com/watch?v=Gr1rrSzvqfg
https://github.com/javierhonduco/rbperf

4\ Polar Signals

Thank you!
Vaishali <vaishali.thakkar@polarsignals.com>

Mastodon: @vaishali@hachyderm.io

Javier <javier@polarsignals.com>
Mastodon: @javierhc@hachyderm.io

mailto:vaishali.thakkar@polarsignals.com
mailto:javier@polarsignals.com

