Common Pitfalls

- Andreea Florescu, -

mailto:fandree@amazon.com

A\
-G
\ J

FUZZING - QUICK INTRO

= Check how system behaves with u
unexpected input N

{ Z;ﬂ Pun-c't_ivor;)

—_—

= Findings: crashes, hangs, timeouts

with random

inpu

) f
)
y
{
r" /
/I
|
J
o
”": “‘I_\",

‘t‘e_Por’t PEV\JEV\&SJ}

I

\/
el
S i [write
(I) nteresting |
l SOPPUS nput to file !, d

P

FUZZING - START

First Run: Generate Corpus

WITH CORPUS

ﬁé,nero(te)
!“ f‘omdom Bt{te_s NN

e L =
call Punc‘t on)
with random ‘

- inpu‘i?

T
L /
|

r‘epor't P‘mdings)J

wr“te
‘{ ‘ interesti ng
Qirgls nput to Ple

=

FUZZING - START WITH CORPUS

First Run: Generate Corpus Next Runs: Extend Corpus

PN

Q)

generate : generate 7
{\ rondlom bytes ”{‘3\;:\1 | ranclom l:«/te_s ~\§l:‘::\

\
‘\
|
\

P S
(cdl function)

{ call Punction)

with random with random

) inpu‘ t s’ (_*‘_A - ;'\Putv/‘)‘ \\'
4 "[corpus g |
. / —Y /
report PindingsJ} / report Pindings}’}

T T

I/ ’/;,’,/,;“”' {/
r— L—\ J ——
(write Vi write /
(1 = interesting interesting |
{ | | /7 /7
(Sorpus) input to file |7 input to file |7

— —

FUZZING IN RUST-VMM/VM-VIRTIO

= Implemented fuzz targets for:
= Virtio Queue
= Virtio Queue Serialization
= Virtio Vsock (Packet)

= Discovered 3 crashes — only 1 triggable by malicious drivers
= Fuzzing runs for 15 minutes on Pull Requests
= Fuzzing at the library level using

= Cloud Hypervisor discovered 1 timeout

https://github.com/rust-fuzz/cargo-fuzz

P1: RUN TIMEOUT IS T0O LARGE

= Fuzzers have a default timeout for hangs/timeouts (i.e. libfuzzer 20 minutes)

= Instead: adjust timeout to suit your use case

FUZZING AT THE LIBRARY LEVEL

Advantages Disadvantages

= It’s EASY to set up = Doesn’t cover the whole virtio

= Can run on almost any host setup

= Needs mocking for the driver
side of communication —
complicated

= Runs in userspace

= Can find false positives

FUZZING AT THE LIBRARY LEVEL

Advantages Disadvantages

= It’s EASY to set up = Doesn’t cover the whole virtio

= Can run on almost any host setup

= Needs mocking for the driver
side of communication —
complicated

= Runs in userspace

= Can find false positives

MOCKING THE DRIVER

MOCKING THE DRIVER

MOCKING THE DRIVER

Me.mon/

SO SO0
OO OGO
What we need i
to mock i

MOCKING THE DRIVER

= Needed for unit tests as well
= Initial version of a mock interface from the beginning

= Evolve the mock interface as you implement features and devices

FUZZING HIGH LEVEL FLOW

P2: RETROFIT FUZZING WHEN THE PROJECT
IS MATURE

= Instead: keep fuzzing in the back of your head, think about how mock objects can
be reused

0

C ’(‘v
(3‘" gad

P3: CRASH ON INVALID INPUT

= Instead: return error to be processed at higher level

"\ \ “‘l) "’ Jud Q \f‘ \‘ s
f' *@ <85“c:
b

STRUCTURE AWARE FUZZING

Without With

fuzz target! (|data: &[u8]]| { fuzz target! (|color: Rgb| {
// Interpret data as bytes // Data already parsed as
// sense for the library // what you want to fuzz.

// fuzz. }

STRUCTURE AWARE FUZZING

= Implemented with Arbitrary
= Significantly reduces the code you need for parsing
= LOC: 270 vs 738

STRUCTURE AWARE FUZZING - PROBLEMS

= Not reproducible

v/

(" generate

[covdom btes [

\‘]:
. S
call Punction)
with random '
| |

Er\Pu

= Reads introduce randomness
= read_corpus(write_corpus()) — not idempotent

= Cannot use it with a custom corpus /

; corpus g
v /

] report ?indings J

nteresting | /

input to file ‘i

P4: RELY ON INCREMENTAL
IMPROVEMENTS

= Instead: check that the tools you want to use have support for future extensions or
allow sufficient time for changes

b ‘\l“;d Q

$\ &v’n :%

\ ‘ 0,_ w1y

f‘ﬁ\ 3‘" ?’\‘C
&,L AL \3‘:4”
’”f & et

THE BUG: EXPLAINED

let data_desc = desc_chain.next().ok_or(Error::DescriptorChainTooShort)?;

From L.x,fun}l b.Z the Virtio-vsockK 'j' LVel Can use a singLe gesc LPTO I

if chain_head.len() >= PKT_HEADER_SIZE as u32 + pkt.len() {

= Addition can overflow

= Bug found during code review

ANALYSIS AND IMPROVEMENTS

= With fuzzing: ~40 minutes to find the bug

= Added an optional fuzz session that runs for 24 hours:
= Needs to be started by one of the maintainers

= Should be started only when needed (changes impacting device implementation)

P5: NOT RUNNING FUZZING LONG ENOUGH

= Instead: figure out a way to include fuzzing for extended period of times without
disrupting development

\) t,jﬁd Q & o’_ 2"

kk\
? $‘ \‘% m\a‘l e
¢ 3 51(" &* o
A ’” Y
«\‘ 5'(\& by g“g@(&‘eﬂ ‘) 4 h\.> i
\.

>y n§# X 2 : ;n 'l A A ‘q‘,
» - WU Yl oA 4 < R o :
R MNP & RS N AR IS \,«\‘n
R SR \/‘ v v \)4 \ ‘,
- ‘C’ At tyxv '~
1 \ G

COVERAGE IN RUST

= Llvm-cov

= In rust: only line coverage

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82%

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82% g

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82%

15 minutes + minimal
corpus

®

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82% g

15 minutes + minimal 34 81.82% Q
corpus

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82%
15 minutes + minimal 34 81.82%
corpus

2 weeks

®
®

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82%
15 minutes + minimal 34 81.82%
corpus

2 weeks 30 83.96%

®
®

COVERAGE REPORT

= Coverage for queue.rs file

Fuzzing Config Missed Regions

15 minutes 34 81.82%
15 minutes + minimal 34 81.82%
corpus

2 weeks 30 83.96%

®
®
®

P6: USING COVERAGE TO DECIDE WHEN TO
STOP FUZZING

= Instead: use coverage to understand how to extend fuzz targets

0

C ’(‘v
(3‘" gad

©

Summary

= P1: Run Timeout is too large

= P2: Retrofit Fuzzing when the project is mature
= P3: Crash on invalid input

= P4: Rely on incremental improvements

= P5: Not running fuzzing long enough

= P6: Using coverage to decide when to stop fuzzing

Fuzzing does not need to be hard to be useful.

©

S 81.82%?

WHY COVERAGE W

= Functions not called on purpose:
= Iterators over descriptor chains -> the data needs to be interpreted by devices anyway

= Missed to call 1 function: desc_table

Fuzzing Config Missed Regions

15 minutes 34 81.82%
15 minutes + minimal 34 81.82%
corpus

2 weeks 30 83.96%
15 mins + missing funcs 26 86.1%

(&)

WHY COVERAGE W

= Most of the missed coverage regions
are macros that are printing errors

= logger is not initialized when running
fuzzing

ue a virtio_qu eT>::1is_valid::<vm_memox
.map_or(true, |v| !mem.address_in_range(v))

error!(

"virtio queue descriptor table goes out of bounds: start:@x{:08x} size:@x{:@8x}",

desc_table.raw_value(),
desc_table_size
);
false
else if avail_ring
.checked_add(avail_ring_size)
.map_or(true, |v| !mem.address_in_range(v))
739.3k

:Queue as vir queue QueueT is_valid::
.map_or(true, |v| Imem.address_in_range(v))

error! (
"virtio queue available ring goes out of bounds: start:@x{:08x} size:@x{:@8x}",

avail_ring.raw_value(),
avail_ring_size

);
false
else if used_ring
.checked_add(used_ring_size)
.map_or(true, |v| !mem.address_in_range(v))
726.9k

:Queue & virtio_queue QueueT 1s_valid:
.map_or(true, |v| Imem.address_in_range(v))

error! (
"virtio queue used ring goes out of bounds: start:@x{:@8x} size:@x{:@8x}",
used_ring.raw_value(),
used_ring_size

);

false

else {
true

<

FUZZING FINDINGS

= Index out of bounds access in the Virtio Mock implementation

= Panic when using wrong ordering in functions called by VMM:

= Also, excluded the invalid ordering in fuzzer

= Division by 0 in descriptor chains iterator:

©

https://github.com/rust-vmm/vm-virtio/pull/162/commits/e42fe6b3165aceec7183e206874d5970a6e591f7
https://github.com/rust-vmm/vm-virtio/pull/174
https://github.com/rust-vmm/vm-virtio/pull/173

