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§ Automated testing

§ Check how system behaves with 
unexpected input

§ Findings: crashes, hangs, timeouts
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First Run: Generate Corpus
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First Run: Generate Corpus Next Runs: Extend Corpus
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§ Implemented fuzz targets for:
§ Virtio Queue
§ Virtio Queue Serialization
§ Virtio Vsock (Packet)

§ Discovered 3 crashes – only 1 triggable by malicious drivers

§ Fuzzing runs for 15 minutes on Pull Requests

§ Fuzzing at the library level using libfuzzer

§ Cloud Hypervisor discovered 1 timeout
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https://github.com/rust-fuzz/cargo-fuzz


§ Fuzzers have a default timeout for hangs/timeouts (i.e. libfuzzer 20 minutes)

§ Instead: adjust timeout to suit your use case
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Advantages

§ It’s EASY to set up

§ Can run on almost any host

§ Runs in userspace

Disadvantages

§ Doesn’t cover the whole virtio
setup

§ Needs mocking for the driver 
side of communication –
complicated

§ Can find false positives
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§ Needed for unit tests as well

§ Initial version of a mock interface from the beginning

§ Evolve the mock interface as you implement features and devices
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§ Instead: keep fuzzing in the back of your head, think about how mock objects can 
be reused
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§ Instead: return error to be processed at higher level
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Without

fuzz_target!(|data: &[u8]| {

// Interpret data as bytes      

// sense for the library

// fuzz.

}

With

fuzz_target!(|color: Rgb| {

// Data already parsed as

// what you want to fuzz.

}
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§ Implemented with Arbitrary

§ Significantly reduces the code you need for parsing

§ LOC: 270 vs 738
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§ Not reproducible

§ Reads introduce randomness
§ read_corpus(write_corpus()) – not idempotent

§ Cannot use it with a custom corpus
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§ Instead: check that the tools you want to use have support for future extensions or 
allow sufficient time for changes
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§ Addition can overflow

§ Bug found during code review
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§ With fuzzing: ~40 minutes to find the bug

§ Added an optional fuzz session that runs for 24 hours:
§ Needs to be started by one of the maintainers
§ Should be started only when needed (changes impacting device implementation)
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§ Instead: figure out a way to include fuzzing for extended period of times without 
disrupting development
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§ Llvm-cov

§ In rust: only line coverage
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§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%
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§ Instead: use coverage to understand how to extend fuzz targets
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Summary
§ P1: Run Timeout is too large

§ P2: Retrofit Fuzzing when the project is mature

§ P3: Crash on invalid input

§ P4: Rely on incremental improvements

§ P5: Not running fuzzing long enough

§ P6: Using coverage to decide when to stop fuzzing

Fuzzing does not need to be hard to be useful.
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§ Functions not called on purpose:
§ Iterators over descriptor chains -> the data needs to be interpreted by devices anyway

§ Missed to call 1 function: desc_table
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Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal 
corpus

34 81.82%

2 weeks 30 83.96%

15 mins + missing funcs 26 86.1%



§ Most of the missed coverage regions 
are macros that are printing errors

§ logger is not initialized when running 
fuzzing
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§ Index out of bounds access in the Virtio Mock implementation
§ https://github.com/rust-vmm/vm-

virtio/pull/162/commits/e42fe6b3165aceec7183e206874d5970a6e591f7

§ Panic when using wrong ordering in functions called by VMM:
§ https://github.com/rust-vmm/vm-virtio/pull/174
§ Also, excluded the invalid ordering in fuzzer

§ Division by 0 in descriptor chains iterator:
§ https://github.com/rust-vmm/vm-virtio/pull/173
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