
Common Pitfalls
- Andreea Florescu, fandree@amazon.com -

mailto:fandree@amazon.com

§ Automated testing

§ Check how system behaves with
unexpected input

§ Findings: crashes, hangs, timeouts

2

First Run: Generate Corpus

3

First Run: Generate Corpus Next Runs: Extend Corpus

4

§ Implemented fuzz targets for:
§ Virtio Queue
§ Virtio Queue Serialization
§ Virtio Vsock (Packet)

§ Discovered 3 crashes – only 1 triggable by malicious drivers

§ Fuzzing runs for 15 minutes on Pull Requests

§ Fuzzing at the library level using libfuzzer

§ Cloud Hypervisor discovered 1 timeout

5

https://github.com/rust-fuzz/cargo-fuzz

§ Fuzzers have a default timeout for hangs/timeouts (i.e. libfuzzer 20 minutes)

§ Instead: adjust timeout to suit your use case

6

Advantages

§ It’s EASY to set up

§ Can run on almost any host

§ Runs in userspace

Disadvantages

§ Doesn’t cover the whole virtio
setup

§ Needs mocking for the driver
side of communication –
complicated

§ Can find false positives

7

8

Advantages

§ It’s EASY to set up

§ Can run on almost any host

§ Runs in userspace

Disadvantages

§ Doesn’t cover the whole virtio
setup

§ Needs mocking for the driver
side of communication –
complicated

§ Can find false positives

9

10

11

12

§ Needed for unit tests as well

§ Initial version of a mock interface from the beginning

§ Evolve the mock interface as you implement features and devices

13

14

§ Instead: keep fuzzing in the back of your head, think about how mock objects can
be reused

15

§ Instead: return error to be processed at higher level

16

17

Without

fuzz_target!(|data: &[u8]| {

// Interpret data as bytes

// sense for the library

// fuzz.

}

With

fuzz_target!(|color: Rgb| {

// Data already parsed as

// what you want to fuzz.

}

18

§ Implemented with Arbitrary

§ Significantly reduces the code you need for parsing

§ LOC: 270 vs 738

19

§ Not reproducible

§ Reads introduce randomness
§ read_corpus(write_corpus()) – not idempotent

§ Cannot use it with a custom corpus

20

§ Instead: check that the tools you want to use have support for future extensions or
allow sufficient time for changes

21

22

§ Addition can overflow

§ Bug found during code review

23

§ With fuzzing: ~40 minutes to find the bug

§ Added an optional fuzz session that runs for 24 hours:
§ Needs to be started by one of the maintainers
§ Should be started only when needed (changes impacting device implementation)

24

§ Instead: figure out a way to include fuzzing for extended period of times without
disrupting development

25

26

§ Llvm-cov

§ In rust: only line coverage

27

28

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

29

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

30

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal
corpus

31

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal
corpus

34 81.82%

32

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal
corpus

34 81.82%

2 weeks

33

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal
corpus

34 81.82%

2 weeks 30 83.96%

34

§ Coverage for queue.rs file

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal
corpus

34 81.82%

2 weeks 30 83.96%

§ Instead: use coverage to understand how to extend fuzz targets

35

Summary
§ P1: Run Timeout is too large

§ P2: Retrofit Fuzzing when the project is mature

§ P3: Crash on invalid input

§ P4: Rely on incremental improvements

§ P5: Not running fuzzing long enough

§ P6: Using coverage to decide when to stop fuzzing

Fuzzing does not need to be hard to be useful.

36

§ Functions not called on purpose:
§ Iterators over descriptor chains -> the data needs to be interpreted by devices anyway

§ Missed to call 1 function: desc_table

37

Fuzzing Config Missed Regions Coverage

15 minutes 34 81.82%

15 minutes + minimal
corpus

34 81.82%

2 weeks 30 83.96%

15 mins + missing funcs 26 86.1%

§ Most of the missed coverage regions
are macros that are printing errors

§ logger is not initialized when running
fuzzing

38

§ Index out of bounds access in the Virtio Mock implementation
§ https://github.com/rust-vmm/vm-

virtio/pull/162/commits/e42fe6b3165aceec7183e206874d5970a6e591f7

§ Panic when using wrong ordering in functions called by VMM:
§ https://github.com/rust-vmm/vm-virtio/pull/174
§ Also, excluded the invalid ordering in fuzzer

§ Division by 0 in descriptor chains iterator:
§ https://github.com/rust-vmm/vm-virtio/pull/173

39

https://github.com/rust-vmm/vm-virtio/pull/162/commits/e42fe6b3165aceec7183e206874d5970a6e591f7
https://github.com/rust-vmm/vm-virtio/pull/174
https://github.com/rust-vmm/vm-virtio/pull/173

