
One Matrix SDK for (almost) everything written in Kotlin

Trixnity
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Who am I?

● @benedict:imbitbu.de
● Privacy and IT security enthusiast
● 4 years of development and admin experience with Matrix
● Maintainer of Trixnity
● Own Startup: connect2x

– Developing Timmy, a TI-Messenger for the medical sector in Germany
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What is Trixnity?

● Matrix SDK
● For Client, Bot, Appservice and Server development
● Multiplatform: JVM, JS, Native
● Written in Kotlin
● High test coverage (including integration tests)
● Licence: Apache 2
● Repository: https://gitlab.com/trixnity/trixnity
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Why another SDK?

● Back in January 2020 there were few multiplatform SDKs 
to choose from

● Mostly no strict typing of events and REST endpoints
● No or difficult extensibility (own event types)
● No generic application purpose (Client, Server, etc.)
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Why Kotlin?

● Statically typed programming language
● Compiles to JVM, JS and Native  no bindings needed→
● Common code base between platforms
● Platform-specific implementations possible

– Access to platform-specific APIs
– Use of platform-specific libraries (Maven, npm, C)

● Allows you to create your own DSLs
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Architecture

core
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Custom Events
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Defining Matrix Endpoints
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Using Matrix Endpoints
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End-To-End-Encryption

● trixnity-olm:

– Libolm Wrapper for Kotlin JVM (via JNA), JS (via WASM) and Native (via C-Interop)

– With packaged libolm binaries

– Planed: migration to vodozemac
(see also: https://gitlab.com/trixnity/uniffi-kotlin-multiplatform-bindings)

● trixnity-crypto

– Key Management

– Encryption and decryption of Events

– Planed: migrate all crypto related stuff out of trixnity-client
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Client

● Contains most features from Matrix v1.5

● Exchangeable database

● Exchangeable media store 

● extremely fast reactive cache on top of the database

● async transactions

● E2E including verification, cross signing, key backup, etc.

● Everything is reactive: rooms, timelines, users, outbox and more

● Notifications

● Thumbnail generation

● Redactions and relations

● ...
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Currently implemented Media-Store-Wrappers

● Filesystem via okio for all targets (except Browsers)

● IndexedDB for JS (browser only)

● In memory for all targets (recommended for testing only)
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How I accidentially created a reactive Cache

UI

Trixnity

The challenge:

● UI should have access to reactive data

The problem:

● Exchangeable database vs. database with listeners

The solution:

● An intermediate layer based on Kotlin Flows

● Read values from database

● Write changed values into database

● Keep vaues there as long as they are used (+delay)

UI

Trixnity

?
Oh…

That’s a
cache!
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Everything is reactive
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Currently implemented Database-Wrappers

● SQL based databases via Exposed for JVM based targets

● Realm via realm-kotlin for JVM based and native targets

● IndexedDB for JS (browser only)

● In memory for all targets (recommended for testing only)
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Transactions
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… and then there was Realm ...
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Async Transactions

Sync processing
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Bot example

Domain Specific Language Extensible
Events!
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● Spotify control bot: https://github.com/VaiTon/matrixfy

● Mensa bot: https://github.com/dfuchss/MensaBot

● Some extensions: https://gitlab.com/Doomsdayrs/trixnityx

● Bot command extensions: https://gitlab.com/Doomsdayrs/trixnityx-commands

● Trixnity-Examples (E2EE enabled ping bot running on all (!) targets): 
https://gitlab.com/trixnity/trixnity-examples

● Timmy messenger (not Open Source yet!): https://timmy-messenger.de

Projects using Trixnity (the ones I know about)

https://github.com/VaiTon/matrixfy
https://github.com/dfuchss/MensaBot
https://gitlab.com/Doomsdayrs/trixnityx
https://gitlab.com/Doomsdayrs/trixnityx-commands
https://gitlab.com/trixnity/trixnity-examples
https://timmy-messenger.de/
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Try it out!
#trixnity:imbitbu.de

@benedict:imbitbu.de


