
One Matrix SDK for (almost) everything written in Kotlin

Trixnity

2

Who am I?

● @benedict:imbitbu.de
● Privacy and IT security enthusiast
● 4 years of development and admin experience with Matrix
● Maintainer of Trixnity
● Own Startup: connect2x

– Developing Timmy, a TI-Messenger for the medical sector in Germany

3

What is Trixnity?

● Matrix SDK
● For Client, Bot, Appservice and Server development
● Multiplatform: JVM, JS, Native
● Written in Kotlin
● High test coverage (including integration tests)
● Licence: Apache 2
● Repository: https://gitlab.com/trixnity/trixnity

4

Why another SDK?

● Back in January 2020 there were few multiplatform SDKs
to choose from

● Mostly no strict typing of events and REST endpoints
● No or difficult extensibility (own event types)
● No generic application purpose (Client, Server, etc.)

5

Why Kotlin?

● Statically typed programming language
● Compiles to JVM, JS and Native no bindings needed→
● Common code base between platforms
● Platform-specific implementations possible

– Access to platform-specific APIs
– Use of platform-specific libraries (Maven, npm, C)

● Allows you to create your own DSLs

6

Architecture

core

7

Custom Events

8

Architecture

core

Client-Server-API

model

client server

Server-Server-API

model

client server

Applicationservice-API

model

client server

9

Defining Matrix Endpoints

10

Using Matrix Endpoints

11

Architecture

core

Client-Server-API

model

client server

Server-Server-API

model

client server

Applicationservice-API

model

client server

olm

crypto

12

End-To-End-Encryption

● trixnity-olm:

– Libolm Wrapper for Kotlin JVM (via JNA), JS (via WASM) and Native (via C-Interop)

– With packaged libolm binaries

– Planed: migration to vodozemac
(see also: https://gitlab.com/trixnity/uniffi-kotlin-multiplatform-bindings)

● trixnity-crypto

– Key Management

– Encryption and decryption of Events

– Planed: migrate all crypto related stuff out of trixnity-client

13

Architecture

core

Client-Server-API

model

client server

Server-Server-API

model

client server

Applicationservice-API

model

client server

applicationserviceclient

repository-*

messenger (view models)

olm

crypto

media-*

14

Client

● Contains most features from Matrix v1.5

● Exchangeable database

● Exchangeable media store

● extremely fast reactive cache on top of the database

● async transactions

● E2E including verification, cross signing, key backup, etc.

● Everything is reactive: rooms, timelines, users, outbox and more

● Notifications

● Thumbnail generation

● Redactions and relations

● ...

15

Currently implemented Media-Store-Wrappers

● Filesystem via okio for all targets (except Browsers)

● IndexedDB for JS (browser only)

● In memory for all targets (recommended for testing only)

16

How I accidentially created a reactive Cache

UI

Trixnity

The challenge:

● UI should have access to reactive data

The problem:

● Exchangeable database vs. database with listeners

The solution:

● An intermediate layer based on Kotlin Flows

● Read values from database

● Write changed values into database

● Keep vaues there as long as they are used (+delay)

UI

Trixnity

?
Oh…

That’s a
cache!

17

Everything is reactive

18

Currently implemented Database-Wrappers

● SQL based databases via Exposed for JVM based targets

● Realm via realm-kotlin for JVM based and native targets

● IndexedDB for JS (browser only)

● In memory for all targets (recommended for testing only)

19

Transactions

Sync processing

Database Transaction

Sync processing

Database Transaction

...

...

20

… and then there was Realm ...

21

Async Transactions

Sync processing

Database Transaction

Sync processing

Database Transaction

Sync processing

Database Transaction

Database Transaction

...

...

...

...Sync processing Sync processing Sync processing

22

Room 1

Room

Gap

The Timeline

Fragment
t0

t1

Fragment
t2

t3

Fragment
t100

t101

Gap

t0

t1

t2

t3

t100

t101

sy
nc

 re
sp

on
se

 a
nd

 o
th

er
 S

D
Ks

Tr
ix

ni
ty

t0

t1

t2

t3Tr
ix

ni
ty

 (r
oo

m
 u

pg
ra

de
s) Room 2

t0

t1

t2

t3

Room 2
t0

t1

t2

t3

23

Bot example

Domain Specific Language Extensible
Events!

24

● Spotify control bot: https://github.com/VaiTon/matrixfy

● Mensa bot: https://github.com/dfuchss/MensaBot

● Some extensions: https://gitlab.com/Doomsdayrs/trixnityx

● Bot command extensions: https://gitlab.com/Doomsdayrs/trixnityx-commands

● Trixnity-Examples (E2EE enabled ping bot running on all (!) targets):
https://gitlab.com/trixnity/trixnity-examples

● Timmy messenger (not Open Source yet!): https://timmy-messenger.de

Projects using Trixnity (the ones I know about)

https://github.com/VaiTon/matrixfy
https://github.com/dfuchss/MensaBot
https://gitlab.com/Doomsdayrs/trixnityx
https://gitlab.com/Doomsdayrs/trixnityx-commands
https://gitlab.com/trixnity/trixnity-examples
https://timmy-messenger.de/

25

Try it out!
#trixnity:imbitbu.de

@benedict:imbitbu.de

