
 

Running MPI applications on Toro unikernel

www.torokernel.io

Matias Vara Larsen 
matiasevara@gmail.com

http://www.torokernel.io/
mailto:matiasevara@gmail.com


 

Who am I?
● I am passionate about operating system 

development and virtualization technologies
● I have worked at Citrix, Tttech, Huawei and 

currently at Vates
● matiasevara@gmail.com
● https://github.com/MatiasVara

mailto:matiasevara@gmail.com
https://github.com/MatiasVara


 

Outline
● Toro unikernel
● MPI over Toro
● OSU benchmarks 
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[1] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[2] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019 
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Toro is an application-oriented unikernel to efficiently deploy parallel applications 
 



 

How does Toro leverage multicore?

● Memory per core

● Cooperative Scheduler

● Core to Core communication based on VirtIO
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BeginThread(Microservice, Thread2, Core2)

The programmer
decides for each thread 

on which core to 
execute it

In Toro, there are 
only threads
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when to yield the CPU 
aka cooperative thread 

scheduling, 
eg: Disk I/O, FS, Socket



 

Core 1 Core 2

Memory

Thread 1

Scheduler 1 Scheduler 2

Thread 1 Thread N Thread 1 Thread N

SysThreadSwitch() SysThreadSwitch()

Thread 2

DoSomeWork() DoSomeWork()

Kernel 

Scheduler

... ...

Each core has 
its own scheduler

Non-preemptive
scheduler



 

Core-to-Core communication
● Each core can communicate with any other core by using 

dedicated queues
● It is based on two primitives: 

– procedure SendTo(Core: DWORD; Buffer: Pointer; Len: DWORD);
– procedure RecvFrom(Core: DWORD; Buffer: Pointer);

● These are the ingredients to implement MPI_Gather(), 
MPI_Bcast() and MPI_Scatter()
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“It’s all talk until the code runs.” - Ward Cunningham



 

How a MPI application is deployed?

Toro Kernel

Threads

Networking

Devices Filesystem

Memory

myMPIApp.elf

VM

Baremetal

The generated binary is Immutable[1], i.e., the 
generated image can be used across different 
hypervisors without the need to recompile it.

MPI Application

MPI Interface



 

How a MPI application is deployed?

MPI_app.c

Core 1 Core 2 Core 3

int 
main(){

}

instantiation

int 
main(){

}

int 
main(){

}

Thread #0 Thread #1 Thread #2

Memory #1 Memory #2 Memory #3



 

Benchmarking
● I benchmark it by using the OSU MPI_Barrier (see OSU 

microbenchmarks[1]) that measures the latency of the 
MPI_Barrier() function for a given number of nodes

● I deploy it by using a single VM (QEMU microvm/KVM) 
with 4, 8, 16 and 32 cores

● I run it on a 1 x Intel Xeon Gold 6314U, 32 cores @ 2.3 
GHz

[1] https://mvapich.cse.ohio-state.edu/benchmarks/
[2] https://github.com/torokernel/torokernel/tree/features-mpi/examples/MPI 

https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/torokernel/torokernel/tree/features-mpi/examples/MPI
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Note that [1] reports between 
20ns to 30ns for 16 nodes in 
the Cray XC40 Xeon Phi 
Systems

[1] “Performance Evaluation of MPI on Cray 
XC40 Xeon Phi Systems”



 

Questions?



 

Thanks!
> Toro kernel is open source on 
GitHub: 
https://github.com/torokernel/torokernel 

> Follow me on Twitter: 
https://twitter.com/ToroKernel

> Sponsor me on GitHub: 
https://github.com/sponsors/MatiasVar
a

> Watch me on Youtube: 
https://www.youtube.com/@torokernel3
078
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https://www.youtube.com/@torokernel3078
https://www.youtube.com/@torokernel3078

