Running MPI applications on? Tdro unikernel

www.torokernel.io

Matias Vara Larsen
matiasevara@gmail.com

http://www.torokernel.io/
mailto:matiasevara@gmail.com

Who am |?

* | am passionate about operating system
development and virtualization technologies

| have worked at Citrix, Tttech, Huawel and
currently at Vates

* matiasevara@gmail.com
* https://github.com/MatiasVara

mailto:matiasevara@gmail.com
https://github.com/MatiasVara

Outline

e Toro unikernel
* MPI over Toro
e OSU benchmarks

Ring 3
Ring 0:

Ring 1

—

Virtual Machine / Baremetal This is your

User Application

QMPI application!

Operating System

Kernel

Device Model

KVM

Hardware

Memory

CPUs

Ring 3
Ring 0:

Ring 1

Virtual Machine / Baremetal

User Application

Operating System syscall
Kernel
Device Model
KVM
Hardware Memory CPUs

Ring 3
Ring 0:

Ring 1

Virtual Machine / Baremetal

User Application

Operating System

Scheduler Drivers
Kernel
Filesystem
Device Model
KVM
Hardware Memory CPUs

Ring 3
Ring 0:

Ring 1

Virtual Machine / Baremetal

User Application

Operating System

Scheduler Drivers
Kernel
Filesystem
Device Model
KVM
Hardware Memory CPUs

Ring 3
Ring 0:

Ring 1

Virtual Machine / Baremetal

User Application

Operating System

Scheduler Drivers
Kernel
Filesystem
Device Model
KVM
Hardware Memory CPUs

Virtual Machine / Baremetal

H User Application TJ

Operating System

Ring 3
Ring 0:

Scheduler

Kernel

Filesystem

: \0
; Q
Device Model

Ring 1 M

Hardware Memory CPUs

Virtual Machine / Baremetal
5 e.g., Osv, MirageOS, Unikraft, NanoVMs
Ring 3 ____________________________________
Ring O:
Kernel Unikernel [1]
Device Model Device Model
Ring 1 KVM
Hardware Memory CPUs

[1] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[2] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019

Ring 3
Ring O

Ring -1

Virtual Machine / Baremetal

User Application

Operating System

Kernel

User Application

Unikernel

Device Model

KVM

Device Model

Hardware

Memory

CPUs

Ring 3
Ring O

Ring -1

Virtual Machine / Baremetal

User Application

Operating System

User Application

POSIX
Kernel]
Unikernel
Device Model Device Model
KVM
Hardware Memory CPUs

Toro is an application-oriented unikernel to efficiently deploy parallel applications

How does Toro leverage multicore?

* Memory per core
* Cooperative Scheduler

e Core to Core communication based on VirtIO

Dedicated Memory

Memory space in Toro
E Memory Region 1 J E Memory Region 2 J
\

Toro reserves
the same amount
of memory for each
core

Core 1l Core 2]

Dedicated Memory

vemon Region T)[__Wemory Regi Keebsseparate

[Memory space in Toro The memory aIIocato\r

each chunk

e
[TORO Memory allocator

[Core 1 Core 2]

Dedicated Memory

Memory space in Toro
E Memory Region 1 J E Memory Re%ion 2 J
T

[TORO Memory allocator j

ToroGetMem() ToroGetMem() |
Thread 1 | — (Thread 2

Core 1 Allocations from Core 1| Core 2
always get memory
from Region 1

_

Scheduler

In Toro, there are

only threads

The programmer

ecides for each thread fhread 1 | [Thread 2

on which core to
executeit ~
7

(D 7 - -

A—

- -

—

BeginThread(DataBase, Threadl, Corel)

BeginThread(Microservice, Thread2, Core2)

Core l

] Core 2

Memory

Scheduler

i DoSomeWork() i DoSomeWork()
Thread 1] Thread 2]
L SysThreadSwitch() i SysThreadSwitch()

Kemel | Scheduler1 | }hthread decides “\Scheduler 2 |
] when to yield the CPU
aka cooperative thread
scheduling,
\eg: Disk I/O, FS, Socket/

--

Non -preemptive
scheduler

Scheduler

Kernel

Scheduler 1

Each core has j __
its own scheduler Y

Scheduler 2

)

2k

2k

[[Thread 1

Thread N

J[[Thread 1

Thread N]J

--

Core-to-Core communication

* Each core can communicate with any other core by using
dedicated queues

* It is based on two primitives:
- procedure SendTo(Core: DWORD; Buffer: Pointer; Len: DWORD);
- procedure RecvFrom(Core; DWORD:; Buffer: Pointer);

* These are the ingredients to implement MP|_Gather(),
MPI1_Bcast() and MPI_Scatter()

Core-to-Core communication

i

/

Queue to send from

LCore 1 to Core 2

o

[buﬁernng

I

avail ring

used ring

RX virtqueue

TX virtqueue

TX virtqueue

A/

[buﬁerﬂng]

T

avail ring

used ring

RX virtqueue

Core 1l

(Queue to send from
L Core 2to Core 1

\ (7/\\

Core 2

__

Core-to-Core communication

L

avail ring

used ring <’\c

Produced by core 1
buffe| and consumed by core
q 2

]

_—
Produced by core 2

and
onsumed by core 1

RX virtqueue

TX virtqueue

Core 1l

TX virtqueue

A/

[buﬁerﬂng]

T

avail ring

used ring

RX virtqueue

[

Core 2

Core-to-Core communication

L

Produced by core 1Y) v

“It's all talk until the code runs.” - Ward Cunningham

‘ huffal and consumed bv core (huﬁo ring \

/

L _ rng)
- _ Produced by core 2 and \
| used ring consumed by core 1 {used rng

RX virtqueue TX virtqueue TX virtqueue RX virtqueue

Core 1] | Core 2

How a MPI application Is deployed?

\
Toro Kernel { VM J
[Threads [Memory

[Devices [Filesystem /
> myMPIApp.elf

[Networking]

\ { Baremetal J
MPI Interface

The generated binary is Immutable[1], i.e., the

MPI1 Application generated image can be used across different

hypervisors without the need to recompile it.

How a MPI application Is deployed?

Thread #0 Thread #1 Thread #2

INt E int i int
mainO{ i man({ ! i main({

J 1)
MPI_app.c _ I -, —7 R
nstantiation T tTTTTTTem tmmmmmmmmes

' Memory #1 | [Memory #2] Memory #3
Core 1 | Core 2 [Core 3

Benchmarking

* | benchmark it by using the OSU MPI_Barrier (see OSU
microbenchmarks|[1]) that measures the latency of the
MPI1_Barrier() function for a given number of nodes

* | deploy it by using a single VM (QEMU microvm/KVM)
with 4, 8, 16 and 32 cores

e [runiton al x Intel Xeon Gold 6314U, 32 cores @ 2.3
GHz

[1] https://mvapich.cse.ohio-state.edu/benchmarks/
[2] https://github.com/torokernel/torokernel/tree/features-mpi/examples/MPI

https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/torokernel/torokernel/tree/features-mpi/examples/MPI

Latency (us)

OSU MPI Barrier

Note that [1] reports between
2t 20ns to 30ns for 16 nodes in
the Cray XC40 Xeon Phi
e Systems

== OSU Barrier
1.1

0.c B——

0.1

[1] “Performance Evaluation of MPI on Cray
cores XC40 Xeon Phi Systems”

Questions?

Thanks!

> Toro kernel is open source on
GitHub:
https://github.com/torokernel/torokernel

> Follow me on Twitter:
https://twitter.com/ToroKernel

> Sponsor me on GitHub:

https://github.com/sponsors/MatiasVar
a

> \Watch me on Youtube:

ngs://www.youtube.com/@torokernel3

| WANTYOUTO
CODE WITH US

https://github.com/torokernel/torokernel
https://twitter.com/ToroKernel
https://github.com/sponsors/MatiasVara
https://github.com/sponsors/MatiasVara
https://www.youtube.com/@torokernel3078
https://www.youtube.com/@torokernel3078

