

Running MPI applications on Toro unikernel

www.torokernel.io

Matias Vara Larsen
matiasevara@gmail.com

http://www.torokernel.io/
mailto:matiasevara@gmail.com

Who am I?
● I am passionate about operating system

development and virtualization technologies
● I have worked at Citrix, Tttech, Huawei and

currently at Vates
● matiasevara@gmail.com
● https://github.com/MatiasVara

mailto:matiasevara@gmail.com
https://github.com/MatiasVara

Outline
● Toro unikernel
● MPI over Toro
● OSU benchmarks

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

This is your
MPI application!

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

syscall

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Scheduler

Filesystem

Drivers

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Scheduler

Filesystem

Drivers

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Scheduler

Filesystem

Drivers

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Scheduler

Filesystem

Drivers

Too general fo
r a

single purpose

application!

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Virtual Machine / Baremeral

Unikernel [1]

User Application

e.g., Osv, MirageOS, Unikraft, NanoVMs

Device Model

[1] “Unikernels: library operating systems for the cloud”, Madhavapeddy et al., 2013
[2] “Unikernels: the next stage of Linux’s dominance”, Ali Raza et al., 2019

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Virtual Machine / Baremeral

Unikernel

User Application

Device Model

calls

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Virtual Machine / Baremeral

Unikernel

User Application

Device Model

calls

POSIX

Virtual Machine / Baremetal

Hardware Memory CPUs

Operating System

Kernel

Ring 0

Ring 3

User Application

KVMRing -1

Device Model

Virtual Machine / Baremeral

Unikernel

User Application

Device Model

calls

POSIX

Toro is an application-oriented unikernel to efficiently deploy parallel applications

How does Toro leverage multicore?

● Memory per core

● Cooperative Scheduler

● Core to Core communication based on VirtIO

Core 1 Core 2

Memory Region 1 Memory Region 2

Memory space in Toro

Dedicated Memory

Toro reserves
the same amount

of memory for each
core

Core 1 Core 2

Memory Region 1 Memory Region 2

Memory space in Toro

Dedicated Memory

TORO Memory allocator

The memory allocator
keeps separated

structures for
each chunk

Core 1 Core 2

Memory Region 1 Memory Region 2

Memory space in Toro

Dedicated Memory

TORO Memory allocator

Thread 1 Thread 2

ToroGetMem()ToroGetMem()

Allocations from Core 1
always get memory

from Region 1

Core 1 Core 2

Memory

Thread 1 Thread 2

Scheduler

BeginThread(DataBase, Thread1, Core1)

BeginThread(Microservice, Thread2, Core2)

The programmer
decides for each thread

on which core to
execute it

In Toro, there are
only threads

Core 1 Core 2

Memory

Thread 1

Scheduler 1 Scheduler 2

SysThreadSwitch() SysThreadSwitch()

Thread 2

DoSomeWork() DoSomeWork()

Kernel

Scheduler

Each thread decides
when to yield the CPU
aka cooperative thread

scheduling,
eg: Disk I/O, FS, Socket

Core 1 Core 2

Memory

Thread 1

Scheduler 1 Scheduler 2

Thread 1 Thread N Thread 1 Thread N

SysThreadSwitch() SysThreadSwitch()

Thread 2

DoSomeWork() DoSomeWork()

Kernel

Scheduler

... ...

Each core has
its own scheduler

Non-preemptive
scheduler

Core-to-Core communication
● Each core can communicate with any other core by using

dedicated queues
● It is based on two primitives:

– procedure SendTo(Core: DWORD; Buffer: Pointer; Len: DWORD);
– procedure RecvFrom(Core: DWORD; Buffer: Pointer);

● These are the ingredients to implement MPI_Gather(),
MPI_Bcast() and MPI_Scatter()

Core 2Core 1

Core-to-Core communication

buffer ring

avail ring

used ring

buffer ring

avail ring

used ring

RX virtqueue RX virtqueue

buffer ring

avail ring

used ring

buffer ring

avail ring

used ring

TX virtqueue TX virtqueue

Queue to send from
Core 2 to Core 1

Queue to send from
Core 1 to Core 2

Core 2Core 1

Core-to-Core communication

buffer ring

avail ring

used ring

buffer ring

avail ring

used ring

RX virtqueue RX virtqueue

buffer ring

avail ring

used ring

buffer ring

avail ring

used ring

TX virtqueue TX virtqueue

Produced by core 2 and
consumed by core 1

Produced by core 1
and consumed by core

2

Core 2Core 1

Core-to-Core communication

buffer ring

avail ring

used ring

buffer ring

avail ring

used ring

RX virtqueue RX virtqueue

buffer ring

avail ring

used ring

buffer ring

avail ring

used ring

TX virtqueue TX virtqueue

Produced by core 2 and
consumed by core 1

Produced by core 1
and consumed by core

2

“It’s all talk until the code runs.” - Ward Cunningham

How a MPI application is deployed?

Toro Kernel

Threads

Networking

Devices Filesystem

Memory

myMPIApp.elf

VM

Baremetal

The generated binary is Immutable[1], i.e., the
generated image can be used across different
hypervisors without the need to recompile it.

MPI Application

MPI Interface

How a MPI application is deployed?

MPI_app.c

Core 1 Core 2 Core 3

int
main(){

}

instantiation

int
main(){

}

int
main(){

}

Thread #0 Thread #1 Thread #2

Memory #1 Memory #2 Memory #3

Benchmarking
● I benchmark it by using the OSU MPI_Barrier (see OSU

microbenchmarks[1]) that measures the latency of the
MPI_Barrier() function for a given number of nodes

● I deploy it by using a single VM (QEMU microvm/KVM)
with 4, 8, 16 and 32 cores

● I run it on a 1 x Intel Xeon Gold 6314U, 32 cores @ 2.3
GHz

[1] https://mvapich.cse.ohio-state.edu/benchmarks/
[2] https://github.com/torokernel/torokernel/tree/features-mpi/examples/MPI

https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/torokernel/torokernel/tree/features-mpi/examples/MPI

OSU MPI_Barrier

4 8 16 32
0.1

0.6

1.1

1.6

2.1

OSU Barrier

La
te

nc
y

(u
s)

cores

Note that [1] reports between
20ns to 30ns for 16 nodes in
the Cray XC40 Xeon Phi
Systems

[1] “Performance Evaluation of MPI on Cray
XC40 Xeon Phi Systems”

Questions?

Thanks!
> Toro kernel is open source on
GitHub:
https://github.com/torokernel/torokernel

> Follow me on Twitter:
https://twitter.com/ToroKernel

> Sponsor me on GitHub:
https://github.com/sponsors/MatiasVar
a

> Watch me on Youtube:
https://www.youtube.com/@torokernel3
078

https://github.com/torokernel/torokernel
https://twitter.com/ToroKernel
https://github.com/sponsors/MatiasVara
https://github.com/sponsors/MatiasVara
https://www.youtube.com/@torokernel3078
https://www.youtube.com/@torokernel3078

