
https://www.pengutronix.de

Having Something To Hide

Ahmad Fatoum – a.fatoum@pengutronix.de

Trusted Key Storage in Linux

Kernel Devroom @ FOSDEM 2023

 2/18

About Me

  Ahmad Fatoum

 Pengutronix e.K.

 a3f 

  a.fatoum@pengutronix.de

 Kernel and Bootloader Porting
 Driver and Graphics Development
 System Integration
 Embedded Linux Consulting

https://github.com/a3f

 3/18

Data encryption at rest

 Only decrypt partition at
runtime

 Distro installers offer it with
LUKS out of the box

 How does it work?

[https://xo.tc/setting-up-full-disk-encryption-on-debian-9-stretch.html]]

https://xo.tc/setting-up-full-disk-encryption-on-debian-9-stretch.html

 4/18

dm-crypt

 Device Mapper maps physical block devices
onto virtual block devices

 dm-crypt target transparently encrypts
virtual block device content to physical device

TABLE=" \
 0 $NBLOCKS crypt aes-cbc-essiv:sha256 \
 :32:logon:key 0 $DEV 0 1 allow_discards \
"
keyctl add logon key 01234567890123456789012345678912 @s
echo "$TABLE" | dmsetup create mydev
echo "$TABLE" | dmsetup load mydev

 5/18

 LUKS is a disk encryption specification for block devices
 dm-crypt volume key encrypted with one or more passphrases
 Encrypted keys persisted to LUKS keyslots area
 cryptsetup(1) is the usual implementation on Linux

LUKS

1st JSON area 2nd JSON area Keyslots area

LUKS2 header on-disk structure

primary
binary header

alignment
padding

secondary
binary header

 6/18

But where does the passphrase come from?

 User Input
 User enters passphrase in initrd or attaches disk with keyfile
 User inserts FIDO security key
 User connects PKCS#11-compatible smart card

 What about unattended boots?
 Trusted Storage needed to hold key and provide it to OS

 7/18

Trusted Platform Modules (TPMs)

 TPM 1.2 standardized as ISO/IEC 11889
 TPM 2.0 mandated by Windows 11
 Available as discrete chips or as firmware (fTPM)
 Has random number generator built-in
 Holds unique never-disclosed key

 Encrypts and decrypts data using this key
 Decryption can be made conditional on integrity

measurement (PCR sealing)

[https://www.amazon.de/-/en/Asus-TPM-M-R2-0-14-1-Module/dp/B01DQQLH74]

https://www.amazon.de/-/en/Asus-TPM-M-R2-0-14-1-Module/dp/B01DQQLH74

 8/18

Utilizing TPMs from userspace

 Kernel provides /dev/tpm, /dev/tpmrm for direct and resource-
managed access respectively

 Libraries exist: tpm2-tools by Intel and ibm-tss
 systemd-cryptsetup has native support for enrolling LUKS keys

in TPMs: encrypted passphrase stored to LUKS2 JSON token area
 Keyphrase and dm-crypt key available to privileged userspace

then stuffs dm-crypt key into kernel keyring
 Why not decrypt TPM-secured key directly into kernel keyring?

 9/18

Linux Trusted and Encrypted Keys

 Trusted Keys have a hardware root of trust used to both
generate and seal/unseal the keys

 Userspace sees, stores, and loads them only in encrypted
form

 Encrypted Keys can be sealed with any key type
 Trusted Keys first added in 2010, originally TPM-specific

 10/18

losetup -P /dev/loop0 loop.img

keyctl add trusted kmk \
"load $(cat kmk.blob)" @s

echo "$TABLE" | dmsetup create mydev
echo "$TABLE" | dmsetup load mydev

should print that It works!
hexdump -C /dev/mapper/mydev

Trusted Keys + dm-crypt example

TKEY=$(keyctl add trusted kmk "new 32" @s)
keyctl pipe "$TKEY" >kmk.blob

fallocate -l $((NBLOCKS * 512)) loop.img
losetup -P /dev/loop0 loop.img

echo "$TABLE" | dmsetup create mydev
echo "$TABLE" | dmsetup load mydev
dd if=/dev/zero of=/dev/mapper/mydev || true
echo "It works!" 1<> /dev/mapper/mydev

cryptsetup close mydev
reboot

NBLOCKS=4096
TABLE="0 $NBLOCKS crypt aes-cbc-essiv:sha256 :32:trusted:kmk 0 /dev/loop0 0 1 allow_discards"

 11/18

Beyond TPMs

 Not everyone agrees it has advantages over doing it in userspace
 But that’s just because userspace TPM handling has enjoyed a lot of work

 Trusted Keys can be the interface of not just TPMs:
 Off-Chip Secure Enclaves
 On-Chip Trusted Execution Environments (TEE)
 Crypto units inside your everyday SoCs

 Work started in 2019 to generalize Trusted Keys and add TEE support

 12/18

Trusted Execution Environment

 GlobalPlatform API standard
 Hardware isolated environment hosts a number of trusted

applications (TAs) making use of the API.
 TAs can implement fTPM, but all goes really:

 Just RNG
 Key sealing/unsealing with a hardware unique key
 Clock, reset, power domain support, so Linux can’t interfere with

secure peripherals
 grep -r tee_client_driver /usr/src/linux

 13/18

CAAM

 NXP’s (née Freescale) Crypto Accelerator and Authentication Module
 Available on the newer i.MX and QoriQ SoCs

 Linux already used it for RNG and Crypto Acceleration
 Direct Memory Access controlled via shared job rings

 Shareable between Normal World (Linux) and Secure World (TEE in ARM TrustZone)

 Has access to a unique One-Time Programmable Master Key fused by NXP if
High Assurance Boot is active

 Red blob generation: Seal/Unseal user-supplied key material using the OTPMK
 Black blob generation: Crypto done inside CAAM and key never disclosed

 14/18

CAAM blobbing for Linux

 Common use case for red key blobbing: Certificate storage
 We had been carrying patches for many years across different customer kernels
 2015: Proof of Concept sent to linux-crypto adding sysfs interface
 2018: NXP suggests new „Secure“ key type specially for CAAM red blobbing
 2019: NXP suggests new „trusted_tk“ key type specially for CAAM black blobbing
 06/2019: RFC Trusted Key Framework generalization and TEE support
 02/2021: v9 of TEE support accepted. Available since v5.13
 07/2021: v1 of CAAM Trusted Keys Support
 05/2022: v10 of CAAM support accepted. Available since v5.19

 15/18

Upstreaming CAAM Trusted Key support

 TEE and TPM don’t utilize the kernel entropy pool
 CAAM driver could do likewise, but we have a perfectly fine CAAM RNG

driver already
 Some possible trust sources may not even have a random number

generator (Example: i.MX6 UltraLiteLite DCP )

 → CAAM backend uses kernel entropy pool. New
trusted.rng=kernel option enables this for other backends as well

 Hardware feature bits are broken on some variants
 CAAMs exists that report BLOB support, but lack AES.. :-)

https://lore.kernel.org/all/20210614201620.30451-4-richard@nod.at/

 16/18

In-field migration without re-encryption

 Mainline „Trusted Keys“ CAAM blobs interchangable with vendor kernel
„Secure Keys“

 Thanks to upstreaming feedback
 Makes life easier for users switching from vendor kernels
 At the cost of making our own sysfs interface incompatible

 Use dm-crypt directly and exclude LUKS area
 One-time import step needed (non-upstream patch )

Old key blob
New key blobOld key blob SysFs Plaintext Key keyctl import

https://lore.kernel.org/all/342fe12286b5582b11e8c899bd9a63db2d4bf61c.1624365751.git-series.a.fatoum@pengutronix.de/

 17/18

Trusted Keys: What more is there to do?

 Encrypted Key support (/key_type_encrypted/ ):

 Direct Trusted Key support (/key_type_trusted/ ):

 Future candidates
 fscrypt (keysetup v1 attempt , keysetup v2 attempt )
 UBIFS authentication (First attempt here )

 LUKS Support would be awesome (Discussion )

 dm-crypt  Encrypted Keys

 dm-crypt  eCryptFS  EVM  NVDIMM

https://elixir.bootlin.com/linux/latest/A/ident/key_type_encrypted
https://elixir.bootlin.com/linux/latest/A/ident/key_type_trusted
https://lore.kernel.org/linux-integrity/20180118131359.8365-1-git@andred.net/
https://lore.kernel.org/keyrings/20210806150928.27857-1-a.fatoum@pengutronix.de/
https://lore.kernel.org/keyrings/cover.b2fdd70b830d12853b12a12e32ceb0c8162c1346.1626945419.git-series.a.fatoum@pengutronix.de/T/#m767cdd1231fa8b536d83c7e23de413ea6939f5c3
https://gitlab.com/cryptsetup/cryptsetup/-/issues/443

https://www.pengutronix.de

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

