Finite state machine...

..and some retrogaming
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Whatis it

It is an abstract machine that can
be in exactly one of a finite states
at any given time.

It can change from a state to
another in response to some
Inputs.

credits: Wikipedia
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. Statecharts

A FSM can be represented by a
connected graph, called statechart
where the nodes are the states,
and the links are the transitions.
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Example lelevator
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. Let's create a statechart
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. Create statechart /siates
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. Create statechart /siates
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. Create statechart /siates
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. Create StateChart / transitions
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. Create StateChaI't / transitions
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. Create StateChaI't / transitions
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// javascript

class Fsm {

setState = (state) => {
this.activeState = state; // activeState must be a function!

}

update = () => {
if(this.activeState) {
this.activeState();
iy
}
i

export default Fsm;
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. Stack based FSM

e Stack of states instead of active state

e Active state is the one on top of the stack

e Every state must pop itself from the stack at the
right time
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tack based FSM ...

// javascript
class FsmStack {
constructor() {

this.stack = [];
}

popState = () => this.stack.pop();

ite = (state) => this.stack.push(st:

te = () = this.stack[0];

= () => {
const active = this.currentState();
if (active) {
3 ()5
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_[xstate

Javascript and Typescript finite
state machines and statecharts for
modern web
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@0
import { createMachine, interpret } from 'xstate';

// Stateless machine definition
// machine.transition(...) is a pure function used by the interpreter.
const toggleMachine = createMachine({
id: 'toggle',
initial: 'inactive',
states: {
inactive: { on: { TOGGLE: 'active' } },
active: { on: { TOGGLE: 'inactive' } }

)8

// Machine instance with internal state

const toggleService = in (
.onTransition(state => sole. log(s
.start();

// => 'inactive'

.send( 'TOGGLE"');
=> 'active'

>.send( 'TOGGLE" ) ;
=>Binactives
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. xstate viz

Code to visual statechart visualizer. (let’s see on the
site)
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Questions?

Gabriele Falasca

Frontend dev

Mozilla Tech Speaker
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https://sourcesense.com/
https://twitter.com/gabrycaos

