Finite state machine...

..and some retrogaming

moz:/la SQURCESENSE

Open Solutions for your Value

Whatis it

It is an abstract machine that can
be in exactly one of a finite states
at any given time.

It can change from a state to
another in response to some
Inputs.

credits: Wikipedia

SOURCESENSE

S— Open Solutions for your Value

. Statecharts

A FSM can be represented by a
connected graph, called statechart
where the nodes are the states,
and the links are the transitions.

N
SOURCESENSE
S~ Open Solutions for your Value

Example lelevator

No Request

{ Prepare Up \

-k Idle

(Prepare Down \

Door Closing
Move Up

Door Closed/ Go Up

Door Closing |

Move Down

Door Closed/ Go Down
e
Ne | o
Started "3 — N Started
Moving ~
A aching Floor /
Check this floor
Approaching Requested Foor/Stop
Up Request
Down Request
Door opened / start timer
At Foor
- /

After(Timeout) / Check Next Destination

moz://a

Next

Destination

.

SQURCESENSE

Open Solutions for your Value

. Let's create a statechart

N
SOURCESENSE

. Create statechart /siates

&

Idle

N
SOURCESENSE
S Open Solutions for your Value

. Create statechart /siates

Idle

SOURCESENSE

. Create statechart /siates

Idle

Military

SOURCESENSE

. Create StateChart / transitions

Marco is near

Idle

Military

SOURCESENSE

. Create StateChaI't / transitions

Marco is near

Idle

Military

SOURCESENSE

. Create StateChaI't / transitions

Marco is near

Military

SOURCESENSE

// javascript

class Fsm {

setState = (state) => {
this.activeState = state; // activeState must be a function!

}

update = () => {
if(this.activeState) {
this.activeState();
iy
}
i

export default Fsm;

moz://a SOURCESENSE

Open Solutions for your Value

. Stack based FSM

e Stack of states instead of active state

e Active state is the one on top of the stack

e Every state must pop itself from the stack at the
right time

N
SOURCESENSE
S~ Open Solutions for your Value

tack based FSM ...

// javascript
class FsmStack {
constructor() {

this.stack = [];
}

popState = () => this.stack.pop();

ite = (state) => this.stack.push(st:

te = () = this.stack[0];

= () => {
const active = this.currentState();
if (active) {
3 ()5

SOURCESENSE
Open Solutions for your Value

_[xstate

Javascript and Typescript finite
state machines and statecharts for
modern web

N STATE

N
SOURCESENSE
S~ Open Solutions for your Value

@0
import { createMachine, interpret } from 'xstate';

// Stateless machine definition
// machine.transition(...) is a pure function used by the interpreter.
const toggleMachine = createMachine({
id: 'toggle',
initial: 'inactive',
states: {
inactive: { on: { TOGGLE: 'active' } },
active: { on: { TOGGLE: 'inactive' } }

)8

// Machine instance with internal state

const toggleService = in (
.onTransition(state => sole. log(s
.start();

// => 'inactive'

.send('TOGGLE"');
=> 'active'

>.send('TOGGLE") ;
=>Binactives

moz://a S URCESENSE

Open Solutions for your Value

. xstate viz

Code to visual statechart visualizer. (let’s see on the
site)

SOURCESENSE

Questions?

Gabriele Falasca

Frontend dev

Mozilla Tech Speaker

SOURCESENSE

https://sourcesense.com/
https://twitter.com/gabrycaos

