Common Practice Staging
00000 00000000

Staging of Artifacts in a Build System

Sascha Roloff

sascha.roloff@huawei.com

Intelligent Cloud Technologies Lab, Huawei Munich Research Center

FOSDEM 2023

Conclusion
[e]e]

sascha.roloff@huawei.com

Commo
©0000

n Practice

A simple hello world program to generate some sample output, built with BSD make

Staging
00000000

Make example

$ cat Makefile
main: main.out.txt

hello: hello.o greet.a
$(CXX) $(.ALLSRC) -o $(.TARGET)

hello.o: hello.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET)

greet.a: greet.o
$(AR) cgs $(.TARGET) $(.ALLSRC:[11)

greet.o: greet.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET) -DWHOM=\"World\"

main.out.txt: hello
./hello > $(.TARGET)
$

Conclusion
[e]e]

Common Practice Staging Conclusion
©0000 00000000 oo

Make example

A simple hello world program to generate some sample output, built with BSD make

$ cat Makefile $ bmake
main: main.out.txt g++ —c hello.cpp -o hello.o
g++ -c greet.cpp -o greet.o -DWHOM=\"World\"
hello: hello.o greet.a ar cqs greet.a greet.o
$(CXX) $(.ALLSRC) -o $(.TARGET) g++ hello.o greet.a —o hello

./hello > main.out.txt
hello.o: hello.cpp greet.hpp $
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET)
$ cat main.out.txt
greet.a: greet.o Hello World
$(AR) cqs $(.TARGET) $(.ALLSRC:[1])

greet.o: greet.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET) -DWHOM=\"World\"

main.out.txt: hello
./hello > $(.TARGET)
$

Commol
00000

n Practice

Staging
00000000

Make example

Add some postprocessing to the sample output

$ cat Makefile
main: main.out.txt

hello: hello.o greet.a
$(CXX) $(.ALLSRC) -o $(.TARGET)

hello.o: hello.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET)

greet.a: greet.o
$(AR) cgs $(.TARGET) $(.ALLSRC:[11)

greet.o: greet.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET) -DWHOM=\"World\"

use.txt: hello
./hello > $(.TARGET)

postprocessed.txt: use.txt
tr ’a-z’ ’A-Z’ < use.txt > postprocessed.txt

main.out.txt: postprocessed.txt
cat postprocessed.txt > $(.TARGET)

Conclusion
[e]e]

Commol
00000

n Practice

Staging
00000000

Make example

Add some postprocessing to the sample output

$ cat Makefile
main: main.out.txt

hello: hello.o greet.a
$(CXX) $(.ALLSRC) -o $(.TARGET)

hello.o: hello.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET)

greet.a: greet.o
$(AR) cgs $(.TARGET) $(.ALLSRC:[11)

greet.o: greet.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET) -DWHOM=\"World\"

use.txt: hello
./hello > $(.TARGET)

postprocessed.txt: use.txt
tr ’a-z’ ’A-Z’ < use.txt > postprocessed.txt

main.out.txt: postprocessed.txt
cat postprocessed.txt > $(.TARGET)

$ bmake

g++ —c hello.cpp -o hello.o

g++ -c greet.cpp -o greet.o -DWHOM=\"World\"
ar cqs greet.a greet.o

g++ hello.o greet.a -o hello

./hello > use.txt

tr ’a-z’ 'A-Z’ < use.txt > postprocessed.txt
cat postprocessed.txt > main.out.txt

$ cat main.out.txt
HELLO WORLD

Conclusion
[e]e]

Common Practice

Staging Conclusion
[e]e] lele]

00000000 (e]e]

Make example

Introduce localization as program variants and unite sample output

$ cat Makefile
main: main.out.txt

hello.o: hello.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET)

_for name in Munich Brussels
hello.$(name): hello.o greet.$(name).a
$(CXX) $(.ALLSRC) -o $(.TARGET)

greet.$(name) .a: greet.$(name).o
$(AR) cqs $(.TARGET) $(.ALLSRC:[1])

greet.$(name) .o: greet.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET) -DWHOM=\"$(name)\"

use.$(name) .txt: hello.$(name)
./hello.$(name) > $(.TARGET)

postprocessed. $(name) . txt: use.$(name).txt
tr ’a-z’ ’A-Z’ < use.$(name).txt > postprocessed.$(name).txt
.endfor

main.out.txt: postpr Munich.txt postpr d.Brussels.txt
cat $(.ALLSRC) > $(.TARGET)

Common Practice

[e]e] le]e}

Staging
00000000

Make example

Introduce localization as program variants and unite sample output

$ cat Makefile
main: main.out.txt

hello.o: hello.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET)

_for name in Munich Brussels
hello.$(name): hello.o greet.$(name).a
$(CXX) $(.ALLSRC) -o $(.TARGET)

greet.$(name) .a: greet.$(name).o
$(AR) cqs $(.TARGET) $(.ALLSRC:[1])

greet.$(name) .o: greet.cpp greet.hpp
$(CXX) -c $(.ALLSRC: [1]) -o $(.TARGET) -DWHOM=\"$(name)\"

use.$(name) .txt: hello.$(name)
./hello.$(name) > $(.TARGET)

postprocessed. $(name) . txt: use.$(name).txt
tr ’a-z’ ’A-Z’ < use.$(name).txt > postprocessed.$(name).txt
.endfor

main.out.txt: postpr Munich.txt postpr d.Brussels.txt
cat $(.ALLSRC) > $(.TARGET)

$ bmake

g++ —c hello.cpp -o hello.o

g++ -c greet.cpp -o greet.Munich.o -DWHOM=\"Munich\"

ar cqs greet.Munich.a greet.Munich.o

g++ hello.o greet.lMunich.a -o hello.Munich

./hello.Munich > use.lMunich.txt

tr ’a-z’ 'A-Z’ < use.Munich.txt > postprocessed.Munich.txt
g++ -c greet.cpp -o greet.Brussels.o -DWHOM=\"Brussels\"

ar cqs greet.Brussels.a greet.Brussels.o

g++ hello.o greet.Brussels.a -o hello.Brussels
./hello.Brussels > use.Brussels.txt

tr ’a-z’ 'A-Z’ < use.Brussels.txt > postprocessed.Brussels.txt
d.Brussels.txt > main.out.txt

cat postpr d.Munich.txt postpr
$

$ cat main.out.txt
HELLO MUNICH
HELLO BRUSSELS

$

Conclusion
[e]e]

Common Practice

[e]e]e] le}

Staging Conclusion
00000000 [e]e]

Bazel example

Example application, built with bazel

$ cat BUILD
NAMES = ["Munich", "Brussels"]

[cc_binary(
name = "hello.%s" % (name,),
srcs = ["hello.cpp"],
deps = [":greet.%s" % (mame,),],
) for name in NAMES]

[cc_library(
name = "greet.’s" % (name,),

hdrs ["greet.hpp"],
sres ["greet.cpp"],
defines = ["’WHOM=\"%s\"’" % (name,)],

) for name in NAMES]

[genrule(
nane
outs

% (name,),

["use.%s.txt" % (name,)],
cmd = "$(location hello.%s) > $@" % (name,),
tools = ["hello.%s" % (name,)],

) for name in NAMES]

[genrule(
name = "postprocessed.’s" % (name,),
outs = ["postprocessed.%s.txt" % (name,)],
emd = "tr ’a-z’ *A-Z’° < $(location use.%s) > $0" % (name,),

srcs = ["use.%s" % (name,)],
) for name in NAMES]

genrule(
name = "main",
outs. ‘main.out.txt"],

cmd = "cat $(SRCS) > $e",
srcs = ["postpr .Munich", "postpr d.Brussels"],

Common Practice
°

Observation

® Many modern build systems nowadays still follow a design decision implemented
by make in the mid 70s

make design decision

Each artifact needs to have a fixed location in the file system

® Allows to compare timestamps as computationally cheap solution to the problem of
How to determine which parts of a program needs to be recompiled?
® Once required, today there is no necessity anymore for this restriction

® Build systems anyway isolate their actions to avoid getting unwanted inputs into
their builds

® Remote execution is also already common practice to take advantage of action
distribution and shared caches

Staging
[]

Staging
® There is no technical reason for a modern build system to enforce an association

of artifacts with the file system

® We propose: Build systems should get over this outdated common practice and
apply staging instead

What is staging?

Actions can freely and independently select the input and output location of
artifacts within their working directory

® Staging stricly separates physical from logical paths

® Each target has its own view of the world and can place generated artifacts at any
logical path they like

® Consuming targets may place these artifacts at a different logical location

® All what matters is how the target is defined and not where

Common Practice
00000

Staging
08000000

Just example

Example application, built with just (build description)

$ cat TARGETS
{ "hello":

["e", "rules", "CC", "binary"]
["hello"]

["hello.cpp"]

, "private-deps": ["greet"l

greet":

{ "type": ["0", "rules", "CC", "library"]
, "arguments_config": ["whom"]

["greet"]

, "hdrs": ["greet.hpp"]

, "srcs": ["greet.cpp"]

, "private-defines":

["WHOM=\"", {"type": "var", "name": "whom", "default": "World"}, "\""]

b
1
¥
s "use":
{ "type": "gemeric"
, "outs": ["use.txt"]

, "cmds": ["./hello > use.txt"]
, "deps": ["hello"]
¥

, "postprocessed":
{ : "generic"
["postprocessed. txt"]
B ["tr ’a-z’ ’A-Z’ < use.txt > postprocessed.txt"]
, "deps": ["use"]

wfort
whom"]

s ["Munich", "Brussels"]
, "dep": ["postprocessed"]

}

. 'main®:
{ "type": "generic"
, "outs": ["main.out.txt"]

cmds" :

["cat Munich/postprocessed.txt Brussels/postprocessed.txt > main.out.txt"]
, "deps": ["all"]
}

Conclusion
[e]e]

Common Practice

Staging
00000

00@00000

Just example

Example application, built with just (configured-target graph)

§ cat TARGETS
< hen

L “binary")

“srcs™: ["hello.cpp
» "private-deps": [greet”]
3

. "library')

, "hane": "shon", "default”: "Norld"),

“cada: [*./hello > use.txe”]
, rdepa”: ["hello"]
3

, "postprocessed
“eype: "generict
"postpror

cossod. 1xt*]
S Az < use.txt > postprocessed. txt®]

Manicn', "Brussels”)
‘postprocessed]

> main.out.oxe']

Conclusion
[e]e]

Common Practice Staging Conclusion
00000 00@00000 (e]e]

Just example

Example application, built with just (configured-target graph)

§ cat TARGETS
< hen

L “binary")

“srcs™: ["hello.cpp
» "private-deps": [greet”]
3

. "library')

, "hane": "shon", "default”: "Norld"),

“cada: [*./hello > use.txe”]
, rdepa”: ["hello"]
3

, "postprocessed
“eype: "generict
"postpror

cossod. 1xt*]
* 2" < use.txt > postprocessed.txt®]

Manicn', "Brussels”)
‘postprocessed]

> main.out.oxe']

Common Practice Staging Conclusion
00000 00000000 (e]e]

Just example

Example application, built with just (configured-target graph + action graph)

Common Practice Staging Conclusion
00000 00000000 (e]e]

Just example

Example application, built with just (configured-target graph + action graph)

Common Practice Staging
00000 00000000

Just example

Example application, built with just (actual build)

Conclusion
[e]e]

Common Practice Staging
00000 00000000

Just example

Example application, built with just (actual build)

$

$ just build -C repos.json main
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

Requested target is [["@"," "main"],{}]
Analysed target [["@","","","main"],{}]
Export targets found: O cached, O uncached, 0 not eligible for caching
Discovered 12 actions, 2 trees, 0 blobs
Building [["@","","","main"],{}].
Processed 12 actions, O cache hits.
Artifacts built, logical paths are:
main.out.txt [72519212fd2388ceea246b0c536£1106047a6223:28:£]

Conclusion
[e]e]

Common Practice Staging
00000 00000000

Just example

Example application, built with just (actual build)

$ just build -C repos.json main

: Requested target is [["@","
: Analysed target [["@","","",'main"],{}]

: Export targets found: O cached, O uncached, 0 not eligible for caching
: Discovered 12 actions, 2 trees, 0 blobs

: Building [["@","","","main"],{}].

: Processed 12 actions, O cache hits.

: Artifacts built, logical paths

", "main"],{}]

are:
main.out.txt [72519212fd2388ceea246b0c536£f10604726223:28:f]

$ just install -C repos.json -o . main
INFO:

Requested target is [["@","","","main"],{}]
: Analysed target [0e", ", v imain®] , (3]
: Export targets found: O cached, O uncached, 0 not eligible for caching

: Discovered 12 actions, 2 trees, 0 blobs
: Building [["0","","","main"],{}].

: Processed 12 actions, 12 cache hits.

: Artifacts can be found in:

Conclusion
[e]e]

/worker/build/62ae6abffde7e151/root/work/example/main.out.txt [72519212fd2388ceea246b0c5361

Common Practice Staging
00000 00000000

Just example

Example application, built with just (actual build)

INFO:

$ cat
HELLO
HELLO

$ just build -C repos.json main

: Requested target is [["@","
: Analysed target [["@","","",'main"],{}]

: Export targets found: O cached, O uncached, 0 not eligible for caching
: Discovered 12 actions, 2 trees, 0 blobs

: Building [["@","","","main"],{}].

: Processed 12 actions, O cache hits.

: Artifacts built, logical paths

", "main"],{}]

are:
main.out.txt [72519212fd2388ceea246b0c536£f10604726223:28:f]

$ just install -C repos.json -o . main

Requested target is [["@","","","main"],{}]
: Analysed target [0e", ", v imain®] , (3]
: Export targets found: O cached, O uncached, 0 not eligible for caching

: Discovered 12 actions, 2 trees, 0 blobs
: Building [["@","","","main"],{}].

: Processed 12 actions, 12 cache hits.

: Artifacts can be found in:

Conclusion
[e]e]

/worker/build/62ae6abffde7e151/root/work/example/main.out.txt [72519212fd2388ceea246b0c5361

main.out.txt
MUNICH
BRUSSELS

Common Practice Staging
00000 00000000

Just example

Example application, built with just (actual build)

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

HELLO
HELLO
$

$ just build -C repos.json main -P

out.txt
Requested target is [["@"," "main"],{}]
Analysed target [["@","","","main"],{}]
Export targets found: O cached, O uncached, 0 not eligible for caching
Discovered 12 actions, 2 trees, 0 blobs
Building [["@","","","main"],{}].
Processed 12 actions, 12 cache hits.
Artifacts built, logical paths are:
main.out.txt [72519212fd2388ceea246b0c536£1106047a6223:28:£]
MUNICH
BRUSSELS

Conclusion
[e]e]

Common Practice Staging
00000 0000000

Patching example
Logical in-place patching (multi-repo config)

$ cat repos.json

{ "main": "
, "repositories":
£
{ "workspace_root": ["file", "../third-party"]
, "target_root": ["file", "."]
, "bindings": {"rules": "rules", "patches": "patches"}
, "rules": {"workspace_root": ["file", "../rules"]}

, "patches": {"workspace_root": ["file", "patches"]}
¥

¥

$

Conclusion
[e]e]

Common Practice Staging
00000 0000000

Patching example

Logical in-place patching (multi-repo config)

$ cat repos.json $ 1s ../third-party
{ "main": " greet.cpp
, "repositories": greet .hpp
L hello.cpp
{ "workspace_root": ["file", "../third-party"] $
, "target_root": ["file", "."]
, "bindings": {"rules": "rules", "patches": "patches"}

, "rules": {"workspace_root": ["file", "../rules"]}
, "patches": {"workspace_root": ["file", "patches"]}
¥

¥

$

Conclusion
[e]e]

Common Practice
00000

Logical in-place patching (multi-

$ cat repos.json

{ "main®: "
, "repositories":
Lo
{ "workspace_root": ["file", "../third-party"]
, "target_root": ["file", "."]
, "bindings": {"rules": "rules", "patches": "patches"}
, "rules" orkspace_root": ["file", "../rules"]}
, "patches": {"workspace_root": ["file", "patches"]}
¥

Staging
00000000

Patching example
repo config)

$ 1s ../third-party
greet.cpp

greet.hpp

hello.cpp

$

$ 1s patches
TARGETS
hello.diff

$

Conclusion
[e]e]

Common Practice Staging Conclusion
00000 00000800 (e]e]

Patching example

Logical in-place patching (multi-repo config)

$ 1s ../third-party

$ cat repos.json
{ "main": " greet.cpp
, "repositories": greet .hpp
L hello.cpp
{ "workspace_root": ["file", "../third-party"] $
, "target_root": ["file", "."]
, "bindings": {"rules": "rules", "patches": "patches"} $ 1s patches
TARGETS
, "rules": {"workspace_root": ["file", "../rules"]} hello.diff
, "patches": {"workspace_root": ["file", "patches"]} $
¥
$

$ cat patches/hello.diff
--- hello.orig.cpp 2023-01-25 17:15:35.300389968 +0100
+++ hello.cpp 2023-01-25 17:15:46.312414032 +0100
Q@ -1,5 +1,5 @@
#include "greet.hpp"
int main(int argc, char *argv([]) {
- greet("Hello");
+ greet("Bonjour");
return 0;
}
$

Conclusion

Staging
fele}

Common Practice
0000000

00000

Patching example

Logical in-place patching (multi-repo config)

$ 1s ../third-party

$ cat repos.json
{ "main": " greet.cpp
, "repositories": greet .hpp
L hello.cpp
{ "workspace_root": ["file", "../third-party"] $
, "target_root": ["file", "."]
, "bindings": {"rules": "rules", "patches": "patches"} $ 1s patches
TARGETS
, "rules": {"workspace_root": ["file", "../rules"]} hello.diff
, "patches": {"workspace_root": ["file", "patches"]} $
¥
$

$ cat patches/hello.diff --- TARGETS.orig
--- hello.orig.cpp 2023-01-25 17:15:35.300389968 +0100 +++ TARGETS
+++ hello.cpp 2023-01-25 17:15:46.312414032 +0100 Q0 -42,4 +42,9 0Q

@@ -1,5 +1,5 Q@ ["cat Munich/postprocessed.txt Brussels/postprocessed.txt > main.out.txt"]
#include "greet.hpp" , "deps": ["all"]

int main(int argc, char *argv([]) {

- greet("Hello"); +, "hello.cpp":
+ greet("Bonjour"); + { "type": ["@", "rules", "patch", "file"]
return 0; + , "src": [["FILE", null, "hello.cpp"l]
3 + , "patch": [["@", "patches", "", "hello.diff"]]
+

$
¥

Common Practice Staging
00000 000000e0

Patching example

Logical in-place patching (target graph + action graph)

Conclusion
[e]e]

Common Practice Staging Conclusion
00000 O00000e0 (e]e]

Patching example

Logical in-place patching (target graph + action graph)

Common Practice Staging
00000 00000000

Patching example

Logical in-place patching (actual build)

Conclusion
[e]e]

Common Practice
00000

Staging
00000000

Patching example

Logical in-place patching (actual build)

$

$ just build -C repos.json mai
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

-P main.out.txt
Requested target is [["@","","","main"],{}]
Analysed target [["@","","","main"],{}]
Export targets found: O cached, O uncached, 0 not eligible for caching
Discovered 13 actions, 2 trees, 1 blobs
Building [["@","","","main"],{}].
Processed 13 actions, O cache hits.
Artifacts built, logical paths are:
main.out.txt [050946c10ca29543ef3e3a39¢45daadf0096507:32: £]

BONJOUR MUNICH
BONJOUR BRUSSELS

Conclusion
[e]e]

Conclusion
°

Summary

® Modern build systems should abandon the restriction to require a unique location
for artifacts in the file system
® We propose to apply staging in current and emerging build systems

® Advantages of staging

® No need to artificially invent new names to avoid conflicts

® More readable and easier to understand
Better to maintain and more efficient to evaluate
Allows to use a single isystem include path to put required library header files
Seamless composition of multi-repo builds as each target has its own view of the
world independent of the place of its definition

Common Practice Staging Conclusion
00 00000000 oce

Sources

Our project
® https://github.com/just-buildsystem/justbuild
® |License: Apache 2.0

https://github.com/just-buildsystem/justbuild

Conclusion
°

Sources

Our project
® https://github.com/just-buildsystem/justbuild
® License: Apache 2.0

Now, the stage is yours!

Thanks for your attention!

https://github.com/just-buildsystem/justbuild

	Common Practice
	Make example
	Bazel example
	Observation

	Staging
	Staging
	Just example
	Patching example

	Conclusion
	Summary
	Sources

