ECC in FLOSS

More curves to the set

Sergi Blanch Torné

Collabora

February 3, 2023

FOSDEM

$\mathrm{C} \mathrm{O}^{\text {collabora }}$

 Presentation Outline

 Presentation Outline}

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

Open First

Elliptic curves

Elliptic curves

Elliptic curve

An elliptic curve over an odd field is a modular congruency with this odd number:

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

where $a, b \in \mathbb{F}_{p}$
With the condition that it must not have singular points (aka non zero discriminant $\Delta=4 a^{3}+27 b^{2} \neq 0$)

Elliptic curves

Elliptic curves

Elliptic curves

Points on this elliptic curve

The set of points of the elliptic curve is $E / \mathbb{F}_{p} \cup \mathcal{O}_{E}$.

$$
\begin{gathered}
E\left(\mathbb{F}_{p}\right)= \\
\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+a x+b(\bmod p) \mid \Delta \neq 0\right\}
\end{gathered}
$$

What's an elliptic curve?

$$
\left\{\mathcal{O}_{E}\right\}
$$

Elliptic curves

Cyclic group for crypto

A cyclic subgroup of points over an elliptic curve:

$$
\langle G\rangle=\left\{G, 2 G, 3 G, \ldots, \mathcal{O}_{E}=n G\right\}
$$

where n is the order of the cyclic group. We need a big n, and $n \approx \# E\left(\mathbb{F}_{p}\right)$, because $|\langle G\rangle| \approx\left|E\left(\mathbb{F}_{p}\right)\right|$

$$
h=\frac{\# E / \mathbb{F}_{p}}{n}
$$

* On Discrete Logarithm Problem over finite fields you'll see notation like $y=g^{x}$ when in ec you see $Q=d P$

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- Weiestraß Reduced Form (WRF)

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \text { over } \mathbb{F}_{p} \\
y^{2}+x y=x^{3}+a x^{2}+b \text { over } \mathbb{F}_{2^{m}}
\end{gathered}
$$

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- Weiestraß Reduced Form (WRF)

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \text { over } \mathbb{F}_{p} \\
y^{2}+x y=x^{3}+a x^{2}+b \text { over } \mathbb{F}_{2^{m}}
\end{gathered}
$$

- Weiestraß Normal Form (WNF)

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- Weiestraß Reduced Form (WRF)

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \text { over } \mathbb{F}_{p} \\
y^{2}+x y=x^{3}+a x^{2}+b \text { over } \mathbb{F}_{2^{m}}
\end{gathered}
$$

- Weiestraß Normal Form (WNF)

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

- Montgomery curves (\mathcal{M})

$$
B y^{2}=x\left(x^{2}+A x+1\right)
$$

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- Weiestraß Reduced Form (WRF)

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \text { over } \mathbb{F}_{p} \\
y^{2}+x y=x^{3}+a x^{2}+b \text { over } \mathbb{F}_{2^{m}}
\end{gathered}
$$

- Weiestraß Normal Form (WNF)

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

- Montgomery curves (\mathcal{M})

$$
B y^{2}=x\left(x^{2}+A x+1\right)
$$

- Edwards curves (\mathcal{E}) (untwisted $a=1$, twisted $a=-1$)

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- Weiestraß Reduced Form (WRF)

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \text { over } \mathbb{F}_{p} \\
y^{2}+x y=x^{3}+a x^{2}+b \text { over } \mathbb{F}_{2^{m}}
\end{gathered}
$$

- Weiestraß Normal Form (WNF)

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

- Montgomery curves (\mathcal{M})

$$
B y^{2}=x\left(x^{2}+A x+1\right)
$$

- Edwards curves (\mathcal{E}) (untwisted $a=1$, twisted $a=-1$)

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- Double-odd Jacobi quartic curves (\mathcal{J})

$$
y^{2}=\left(a^{2}-4 b\right) x^{4}-2 a x^{2}+1
$$

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- Weiestraß Reduced Form (WRF)

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \text { over } \mathbb{F}_{p} \\
y^{2}+x y=x^{3}+a x^{2}+b \text { over } \mathbb{F}_{2^{m}}
\end{gathered}
$$

- Weiestraß Normal Form (WNF)

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

- Montgomery curves (\mathcal{M})

$$
B y^{2}=x\left(x^{2}+A x+1\right)
$$

- Edwards curves (\mathcal{E}) (untwisted $a=1$, twisted $a=-1$)

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- Double-odd Jacobi quartic curves (\mathcal{J})

$$
y^{2}=\left(a^{2}-4 b\right) x^{4}-2 a x^{2}+1
$$

Elliptic curves

Elliptic curves

- The Discrete Logarithm Problem: DLP over \mathbb{F}_{p} requires a much larger p than ECDLP over $E\left(\mathbb{F}_{p}\right)$

Elliptic curves

- The Discrete Logarithm Problem: DLP over \mathbb{F}_{p} requires a much larger p than ECDLP over $E\left(\mathbb{F}_{p}\right)$
- Yes, smaller operations over the finite field, but ecc mean more operations over the finite field

Elliptic curves

- The Discrete Logarithm Problem: DLP over \mathbb{F}_{p} requires a much larger p than ECDLP over $E\left(\mathbb{F}_{p}\right)$
- Yes, smaller operations over the finite field, but ecc mean more operations over the finite field
- Other field can be used like $\mathbb{F}_{p^{m}}$ but m prime in $\mathbb{F}_{2^{m}}$.

Elliptic curves

- The Discrete Logarithm Problem: DLP over \mathbb{F}_{p} requires a much larger p than ECDLP over $E\left(\mathbb{F}_{p}\right)$
- Yes, smaller operations over the finite field, but ecc mean more operations over the finite field
- Other field can be used like $\mathbb{F}_{p^{m}}$ but m prime in $\mathbb{F}_{2^{m}}$.
- You can change the curve without changing underlying the field size.

Elliptic curves

- The Discrete Logarithm Problem: DLP over \mathbb{F}_{p} requires a much larger p than ECDLP over $E\left(\mathbb{F}_{p}\right)$
- Yes, smaller operations over the finite field, but ecc mean more operations over the finite field
- Other field can be used like $\mathbb{F}_{p^{m}}$ but m prime in $\mathbb{F}_{2^{m}}$.
- You can change the curve without changing underlying the field size.
This has a huge effect on cryptanalysis and the lifespan on embedded

$\mathrm{C}=\mathrm{O}^{\text {collabora }}$

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

Open First

ECC standards

- IEEE P1363-2000
- NIST 186-2
- ANSI X9.62-1998 ${ }^{\text {a }}$
- Certicom Sec1v1 \& Sec2v1

ECC standards

- IEEE P1363-2000
- NIST 186-2
- ANSI X9.62-1998 ${ }^{\text {a }}$
- Certicom Sec1v1 \& Sec2v1
- Brainpool
- GOST R 34.10

ECC standards

- IEEE P1363-2000
- NIST 186-2
- ANSI X9.62-1998 ${ }^{\text {a }}$
- Certicom Sec1v1 \& Sec2v1
- Brainpool
- GOST R 34.10
- rfc4492
- rfc5480
- rfc5639
- rfc6090
- rfc6637
- rfc7748
- rfc8734

ECC standards

- IEEE P1363-2000
- NIST 186-2
- ANSI X9.62-1998 ${ }^{\text {a }}$
- Certicom Sec1v1 \& Sec2v1
- Brainpool
- GOST R 34.10
- rfc4492
- rfc5480
- rfc5639
- rfc6090
- rfc6637
- rfc7748
- rfc8734

xkcd 927

Cro ${ }^{\text {collabora }}$

Presentation Outline

ECC standards

Implementations

Newer curves, more standards

Choose your curve

Open First

Implementations

	WRF	Edwards
OpenSSL	$\checkmark \checkmark$	\checkmark
libgcrypt (GnuPG)	\checkmark	\checkmark
GnuTLS	\checkmark	\checkmark
Kernel	\checkmark	\checkmark
WolfSSL	\checkmark	\checkmark
crypto (rust)		\checkmark
sequoia (rust)	\checkmark	\checkmark
cryptography (python)		
elliptic-py	\checkmark	
elliptic (javascript)	\checkmark	\checkmark
crypto (go)	\checkmark	\checkmark

* Not pretending to be exhaustive
$\checkmark \checkmark E\left(\mathbb{F}_{p}\right)$ and $E\left(\mathbb{F}_{2^{m}}\right)$

Implementations

\square tor

- torspec: rend-spec-v3a
- onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion
${ }^{a}$ v2: was a 80-bit truncated SHA1 of a 1024 RSA key, onion addresses were 16 characters long Open First

Implementations

- tor
- torspec: rend-spec-v3a
- onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion
- PUBKEY: is the 32 bytes ed25519 master pubkey of the hidden service
- The result is a 56 -characters onion address
${ }^{a}$ v2: was a 80-bit truncated SHA1 of a 1024 RSA key, onion addresses were 16 characters long Open First

Implementations

- tor
\rightarrow torspec: rend-spec-v3a
- onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion
- PUBKEY: is the 32 bytes ed 25519 master pubkey of the hidden service
- The result is a 56 -characters onion address
- The key must not have torsion component (or multiple equivalent onion addresses could map to the same service). This is related with the cofactor.
${ }^{a}$ v2: was a 80-bit truncated SHA1 of a 1024 RSA key, onion addresses were 16 characters long Open First

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

Open First

Edwards curves

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

Edwards curves

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

- Curve25519 \& Curve448
- rfc7748: Few primes of the form $2^{c}-s$ with $\ll s$ exist in [$2^{250}, 2^{521}$]

$y^{2}=x^{3}+A x^{2}+x$		
p	$2^{255}-19$	$2^{448}-2^{224}-1$
A	486662	156326
h	8	4

NIST

- ed25519 \& ed448

$$
x^{2}+y^{2}=a+d x^{2} y^{2}
$$

Edwards curves

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

- Curve25519 \& Curve448
$-\operatorname{rfc} 7748$: Few primes of the form $2^{c}-s$ with $\ll s$ exist in $\left[2^{250}, 2^{521}\right]$

$y^{2}=x^{3}+A x^{2}+x$		
p	$2^{255}-19$	$2^{448}-2^{224}-1$
A	486662	156326
h	8	4

NIST

- ed25519 \& ed448

$$
x^{2}+y^{2}=a+d x^{2} y^{2}
$$

Edwards curves

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

- Curve25519 \& Curve448
$-\operatorname{rfc} 7748$: Few primes of the form $2^{c}-s$ with $\ll s$ exist in [$\left.2^{250}, 2^{521}\right]$

$y^{2}=x^{3}+A x^{2}+x$		
p	$2^{255}-19$	$2^{448}-2^{224}-1$
A	486662	156326
h	8	4

NIST

- ed25519 \& ed448

$$
x^{2}+y^{2}=a+d x^{2} y^{2}
$$

- Why they are good?
- Build to avoid potential implementation pitfaills, Immune to timing attacks,

Double-odd [Jacobi Quartic]

- do255\{e,s\}
- curve $y^{2}=x\left(x^{2}+a x+b\right)$ order $2 r \equiv 2(\bmod 4)$
- Different base field and curves by operation:
encryption $\quad p=2^{255}-18651 \quad(a, b)=(0,-2)$
sign $\quad p=2^{255}-3957 \quad(a, b)=\left(-1, \frac{1}{2}\right)$
- cofactor 2 .
- The mapping to a twisted Edwards curve can be used

Double-odd [Jacobi Quartic]

- $\operatorname{do255\{ e,s\} }$
- curve $y^{2}=x\left(x^{2}+a x+b\right)$ order $2 r \equiv 2(\bmod 4)$
- Different base field and curves by operation:
encryption $\quad p=2^{255}-18651 \quad(a, b)=(0,-2)$
sign $\quad p=2^{255}-3957 \quad(a, b)=\left(-1, \frac{1}{2}\right)$
- cofactor 2 .
- The mapping to a twisted Edwards curve can be used

Double-odd [Jacobi Quartic]

- $\operatorname{do255\{ e,s\} }$
- curve $y^{2}=x\left(x^{2}+a x+b\right)$ order $2 r \equiv 2(\bmod 4)$
- Different base field and curves by operation:
encryption $\quad p=2^{255}-18651 \quad(a, b)=(0,-2)$
sign $\quad p=2^{255}-3957 \quad(a, b)=\left(-1, \frac{1}{2}\right)$
- cofactor 2 .
- The mapping to a twisted Edwards curve can be used

- jq255\{e,s\}
- Another mapping to a Jacobi Quartic: $y^{2}=\left(a^{2}-4 b\right) x^{4}-2 a x^{2}+1$
- Coordinates transformations and operations in the maps here they are better
- Even faster operations and shorter signatures

$\mathrm{C}=\mathrm{O}^{\text {collabora }}$

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

Open First
ristretto255, decaf448 and the zoo

- draft-irtf-cfrg-ristretto255-decaf448

Open First

ristretto255, decaf448 and the zoo

- draft-irtf-cfrg-ristretto255-decaf448
- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.

ristretto255, decaf448 and the zoo

- draft-irtf-cfrg-ristretto255-decaf448
- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping

ristretto255, decaf448 and the zoo

- draft-irtf-cfrg-ristretto255-decaf448
- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping
- It is not for an specific curve, but for the maths behind a family of curves.

ristretto255, decaf448 and the zoo

- draft-irtf-cfrg-ristretto255-decaf448
- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping
- It is not for an specific curve, but for the maths behind a family of curves.

Perhaps there is some movement to make it easier, so that we don't have to share the curve!

ristretto255, decaf448 and the zoo

- draft-irtf-cfrg-ristretto255-decaf448
- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping
- It is not for an specific curve, but for the maths behind a family of curves.

Perhaps there is some movement to make it easier, so that we don't have to share the curve!

- Lenstra, A. K., \& Wesolowski, B. (2015). A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive.
ristretto255, decaf448 and the zoo
- A random zoo: sloth, unicorn, and trx

Open First

ristretto255, decaf448 and the zoo

- A random zoo: sloth, unicorn, and trx
- sloth: slow-time hash function

Open First

ristretto255, decaf448 and the zoo

- A random zoo: sloth, unicorn, and trx
- sloth: slow-time hash function
- unicorn: random number generator

ristretto255, decaf448 and the zoo

- A random zoo: sloth, unicorn, and trx
- sloth: slow-time hash function
- unicorn: random number generator
- to who every one can contribute to influence its results
- everyone can quickly verify the correct inclusion of their contribution
- Counter-contribution is hard

ristretto255, decaf448 and the zoo

- A random zoo: sloth, unicorn, and trx
- sloth: slow-time hash function
- unicorn: random number generator
- to who every one can contribute to influence its results
- everyone can quickly verify the correct inclusion of their contribution
- Counter-contribution is hard
- trx: stream of trustworthy random ec parameters suitable for crypto

ristretto255, decaf448 and the zoo

- A random zoo: sloth, unicorn, and trx
- sloth: slow-time hash function
- unicorn: random number generator
- to who every one can contribute to influence its results
- everyone can quickly verify the correct inclusion of their contribution
- Counter-contribution is hard
- trx: stream of trustworthy random ec parameters suitable for crypto
- Everyone can influence and verify
- But no one can knowingly affect the choices
- The results cannot be predicted or effectively manipulated
- Prevent prior cryptanalysis or target malicious choices.

ristretto255, decaf448 and the zoo

Corollary

A random zoo: sloth, unicorn, and trx
"Is a way to fix the small set of elliptic curves currently used, and it allows usage of parameters that are frequently refreshed and that cannot have been scrutinised before"

FOSDEM
ECC in FLOSS
Thanks!
Q \& A

