

ECC in FLOSS

More curves to the set

Sergi Blanch Torné

Collabora

February 3, 2023

FOSDEM

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

Elliptic curve

An elliptic curve over an odd field is a modular congruency with this odd number:

where $a, b \in \mathbb{F}_p$ With the condition that it must **not** have singular points (aka non zero discriminant $\Delta = 4a^3 + 27b^2 \neq 0$)

What's an elliptic curve?

Points on this elliptic curve

The set of points of the elliptic curve is $E/\mathbb{F}_p \cup \mathcal{O}_E$.

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 = x^3 + ax + b \pmod{p} | \Delta \neq 0\}$$
$$\cup \\ \{\mathcal{O}_E\}$$

Open First

Cyclic group for crypto

A cyclic subgroup of points over an elliptic curve:

$$\langle G \rangle = \{G, 2G, 3G, \dots, \mathcal{O}_E = nG\}$$

where *n* is the order of the cyclic group. We need a big *n*, and $n \approx \# E(\mathbb{F}_p)$, because $|\langle G \rangle| \approx |E(\mathbb{F}_p)|$

$$h=\frac{\#E/\mathbb{F}_p}{n}$$

* On Discrete Logarithm Problem over finite fields you'll see notation like $y = g^x$ when in ec you see Q = dP

** Skip torsion points or Isogenies definitions

 Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- ► Weiestraß Reduced Form (WRF) y² = x³ + ax + b over 𝔽_p y² + xy = x³ + ax² + b over 𝔽_{2^m}

Open First

Elliptic curves

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- ► Weiestraß Reduced Form (WRF) y² = x³ + ax + b over 𝔽_p y² + xy = x³ + ax² + b over 𝔽_{2^m}
- Weiestraß Normal Form (WNF) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- ► Weiestraß Reduced Form (WRF) y² = x³ + ax + b over 𝔽_p y² + xy = x³ + ax² + b over 𝔽_{2^m}
- Weiestraß Normal Form (WNF) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Montgomery curves (\mathcal{M}) $By^2 = x(x^2 + Ax + 1)$

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- ► Weiestraß Reduced Form (WRF) y² = x³ + ax + b over 𝔽_p y² + xy = x³ + ax² + b over 𝔽₂^m
- Weiestraß Normal Form (WNF) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Montgomery curves (\mathcal{M}) $By^2 = x(x^2 + Ax + 1)$
- Edwards curves (\mathcal{E}) (untwisted a = 1, twisted a = -1) $ax^2 + y^2 = 1 + dx^2y^2$

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- ► Weiestraß Reduced Form (WRF) y² = x³ + ax + b over 𝔽_p y² + xy = x³ + ax² + b over 𝔽₂^m
- Weiestraß Normal Form (WNF) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Montgomery curves (\mathcal{M}) $By^2 = x(x^2 + Ax + 1)$
- Edwards curves (\mathcal{E}) (untwisted a = 1, twisted a = -1) $ax^2 + y^2 = 1 + dx^2y^2$
- Double-odd Jacobi quartic curves (J) $y^2 = (a^2 4b)x^4 2ax^2 + 1$

- Neal Koblitz and Victor Miller independent co-discovered (for crypto purposes)
- ► Weiestraß Reduced Form (WRF) y² = x³ + ax + b over 𝔽_p y² + xy = x³ + ax² + b over 𝔽₂^m
- Weiestraß Normal Form (WNF) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Montgomery curves (M)
 By² = x(x² + Ax + 1)
- Edwards curves (\mathcal{E}) (untwisted a = 1, twisted a = -1) $ax^2 + y^2 = 1 + dx^2y^2$
- ► Double-odd Jacobi quartic curves (\mathcal{J}) $y^2 = (a^2 - 4b)x^4 - 2ax^2 + 1$

The Discrete Logarithm Problem: DLP over F_p requires a much larger p than ECDLP over E(F_p)

- The Discrete Logarithm Problem: DLP over F_p requires a much larger p than ECDLP over E(F_p)
- Yes, smaller operations over the finite field,
 but ecc mean more operations over the finite field

- The Discrete Logarithm Problem: DLP over F_p requires a much larger p than ECDLP over E(F_p)
- Yes, smaller operations over the finite field,
 but ecc mean more operations over the finite field
- ▶ Other field can be used like 𝔽_{p^m} but m prime in 𝔽_{2^m}.

- The Discrete Logarithm Problem: DLP over F_p requires a much larger p than ECDLP over E(F_p)
- Yes, smaller operations over the finite field,
 but ecc mean more operations over the finite field
- ▶ Other field can be used like 𝔽_{p^m} but m prime in 𝔽_{2^m}.
- You can change the curve without changing underlying the field size.

Open First

The Discrete Logarithm Problem: DLP over F_p requires a much larger p than ECDLP over E(F_p)

- Yes, smaller operations over the finite field,
 but ecc mean more operations over the finite field
- ▶ Other field can be used like 𝔽_{p^m} but m prime in 𝔽_{2^m}.
- You can change the curve without changing underlying the field size. This has a huge effect on cryptanalysis and the lifespan on embedded

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

- ▶ IEEE P1363-2000
- ▶ NIST 186-2
- ANSI X9.62-1998^a
- Certicom Sec1v1 & Sec2v1

Open First

Annex H.2: share curve means share cryptoanalysis

- ▶ IEEE P1363-2000
- ▶ NIST 186-2
- ANSI X9.62-1998^a
- Certicom Sec1v1 & Sec2v1
- Brainpool
- ▶ GOST R 34.10

Open First ^a Annex H.2: share curve means share cryptoanalysis

- ▶ IEEE P1363-2000
- ▶ NIST 186-2
- ANSI X9.62-1998^a
- Certicom Sec1v1 & Sec2v1
- Brainpool
- ▶ GOST R 34.10

- rfc4492
- rfc5480
- rfc5639
- rfc6090
- rfc6637
- rfc7748
- rfc8734

Open First

Annex H.2: share curve means share cryptoanalysis

- ▶ IEEE P1363-2000
- ▶ NIST 186-2
- ANSI X9.62-1998^a
- Certicom Sec1v1 & Sec2v1
- Brainpool
- GOST R 34.10

- rfc4492
- rfc5480
- rfc5639
- rfc6090
- ▶ rfc6637
- rfc7748
- rfc8734

STILLATION: HERE ROLECAS: THOSE ARE INCOMESSAS: STRAFFORD STRAFFARDS STRA	HOW STANDARDS PROLIFERATE: (SED A/C OMMORRS, OWINGER DIGGONGS, INSTITUT MESSAGING, ETC.)				
	SITUATION: THERE ARE IN COMPETING STANDARDS	IM?! RIDICULOUS! WE NEED TO DEALCOPO ONE UNIVERSI STROARD THAT COVERS EVERYTHIES USE ONSES. HETH!	SITUATION: THERE ARE IS COMPETING STANDARDS		

xkcd 927

Open First

Annex H.2: share curve means share cryptoanalysis

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

	WRF	Edwards
OpenSSL	$\checkmark\checkmark$	\checkmark
libgcrypt (GnuPG)	\checkmark	\checkmark
GnuTLS	\checkmark	\checkmark
Kernel	\checkmark	\checkmark
WolfSSL	\checkmark	\checkmark
crypto (rust)		\checkmark
sequoia (rust)	\checkmark	\checkmark
<pre>cryptography (python)</pre>		
elliptic-py	\checkmark	
elliptic (javascript)	\checkmark	\checkmark
crypto (go)	\checkmark	\checkmark

* Not pretending to be exhaustive

 $\sqrt{\sqrt{E}(\mathbb{F}_p)}$ and $E(\mathbb{F}_{2^m})$

tor

- torspec: rend-spec-v3^a
 - onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion

 $^{\rm a}$ v2: was a 80-bit truncated SHA1 of a 1024 RSA key, onion addresses were 16 characters long Open First

tor

- torspec: rend-spec-v3^a
 - onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion
 - ▶ PUBKEY: is the 32 bytes ed25519 master pubkey of the hidden service
 - The result is a 56-characters onion address

 $^{\rm a}$ v2: was a 80-bit truncated SHA1 of a 1024 RSA key, onion addresses were 16 characters long Open First

tor

torspec: rend-spec-v3^a

- onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion
- ▶ PUBKEY: is the 32 bytes ed25519 master pubkey of the hidden service
- The result is a 56-characters onion address
- The key must not have torsion component (or multiple equivalent onion addresses could map to the same service). This is related with the cofactor.

 $^{\rm a}$ v2: was a 80-bit truncated SHA1 of a 1024 RSA key, onion addresses were 16 characters long Open First

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

Curve25519 & Curve448

• rfc7748: Few primes of the form $2^c - s$ with << s exist in $[2^{250}, 2^{521}]$

$$\begin{array}{c|c} y^2 = x^3 + Ax^2 + x \\ \hline p & 2^{255} - 19 & 2^{448} - 2^{224} - 1 \\ A & 486662 & 156326 \\ h & 8 & 4 \end{array}$$

NIST ► ed25519 & ed448

 $x^2 + y^2 = a + dx^2y^2$

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

Curve25519 & Curve448

▶ rfc7748: Few primes of the form $2^c - s$ with << s exist in $[2^{250}, 2^{521}]$

$$\begin{array}{c|c} y^2 = x^3 + Ax^2 + x \\ \hline p & 2^{255} - 19 & 2^{448} - 2^{224} - 1 \\ A & 486662 & 156326 \\ h & 8 & 4 \end{array}$$

NIST ► ed25519

ed25519 & ed448

$$x^2 + y^2 = a + dx^2y^2$$

Elliptic from defined by s73 - s78 - definition? - s must believe

They are Montgomery curves with a birationally equivalent [twisted] Edwards maps.

Curve25519 & Curve448

▶ rfc7748: Few primes of the form $2^c - s$ with << s exist in $[2^{250}, 2^{521}]$

$$\begin{array}{c|c} y^2 = x^3 + Ax^2 + x \\ \hline p & 2^{255} - 19 & 2^{448} - 2^{224} - 1 \\ A & 486662 & 156326 \\ h & 8 & 4 \end{array}$$

NIST

ed25519 & ed448

$$x^2 + y^2 = a + dx^2 y^2$$

► Why they are good?

Open First Build to avoid potential implementation pitfaills, Immune to timing attacks,

Double-odd [Jacobi Quartic]

The mapping to a twisted Edwards curve can be used

Double-odd [Jacobi Quartic]

do255{e,s}
curve
$$y^2 = x(x^2 + ax + b)$$
 order $2r \equiv 2 \pmod{4}$
Different base field and curves by operation:
encryption $p = 2^{255} - 18651$ $(a, b) = (0, -2)$
sign $p = 2^{255} - 3957$ $(a, b) = (-1, \frac{1}{2})$
cofactor 2.

► The mapping to a twisted Edwards curve can be used

Double-odd [Jacobi Quartic]

 do255{e,s}
 curve y² = x(x² + ax + b) order 2r ≡ 2 (mod 4)
 Different base field and curves by operation: encryption p = 2²⁵⁵ - 18651 (a, b) = (0, -2) sign p = 2²⁵⁵ - 3957 (a, b) = (-1, ¹/₂)
 cofactor 2.

The mapping to a twisted Edwards curve can be used

▶ jq255{e,s}

- Another mapping to a Jacobi Quartic: $y^2 = (a^2 4b)x^4 2ax^2 + 1$
- Coordinates transformations and operations in the maps here they are better
- Even faster operations and shorter signatures

Presentation Outline

ECC overview

ECC standards

Implementations

Newer curves, more standards

Choose your curve

draft-irtf-cfrg-ristretto255-decaf448

draft-irtf-cfrg-ristretto255-decaf448

- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.

draft-irtf-cfrg-ristretto255-decaf448

- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping

draft-irtf-cfrg-ristretto255-decaf448

- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping
- It is not for an specific curve, but for the maths behind a family of curves.

draft-irtf-cfrg-ristretto255-decaf448

- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping
- It is not for an specific curve, but for the maths behind a family of curves.

Perhaps there is some movement to make it easier, so that we **don't have to share the curve!**

draft-irtf-cfrg-ristretto255-decaf448

- Decaf is a technique for constructing prime-order groups with non-malleable encodings from non-prime-order elliptic curves.
- Ristretto extends this technique to support cofactor-8 curves such as Curve25519.
- Uses the Twisted Edwards mapping but also the Jacobi Quartic mapping
- It is not for an specific curve, but for the maths behind a family of curves.

Perhaps there is some movement to make it easier, so that we **don't have to share the curve!**

Lenstra, A. K., & Wesolowski, B. (2015). A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive.

A random zoo: sloth, unicorn, and trx

A random zoo: sloth, unicorn, and trx
 sloth: *slow*-time hash function

► A random zoo: sloth, unicorn, and trx

- sloth: slow-time hash function
- unicorn: random number generator

A random zoo: sloth, unicorn, and trx

- sloth: slow-time hash function
- unicorn: random number generator
 - to who every one can contribute to influence its results
 - everyone can quickly verify the correct inclusion of their contribution
 - Counter-contribution is hard

A random zoo: sloth, unicorn, and trx

- sloth: slow-time hash function
- unicorn: random number generator
 - to who every one can contribute to influence its results
 - everyone can quickly verify the correct inclusion of their contribution
 - Counter-contribution is hard
- trx: stream of trustworthy random ec parameters suitable for crypto

A random zoo: sloth, unicorn, and trx

- sloth: slow-time hash function
- unicorn: random number generator
 - to who every one can contribute to influence its results
 - everyone can quickly verify the correct inclusion of their contribution
 - Counter-contribution is hard
- trx: stream of trustworthy random ec parameters suitable for crypto
 - Everyone can influence and verify
 - But no one can knowingly affect the choices
 - The results cannot be predicted or effectively manipulated
 - Prevent prior cryptanalysis or target malicious choices.

Corollary

A random zoo: sloth, unicorn, and trx

"Is a way to fix the small set of elliptic curves currently used, and it allows usage of parameters that are frequently refreshed and that cannot have been scrutinised before"

FOSDEM ECC in FLOSS

Thanks!

Q & A

