SECURE BY

ACC

IDENT

by André Jaenisch

5th Fe

oruary 2023

CC BY 4.0 International

IT'S A ME!

André Jaenisch Web-Development
& -Consulting

Freelancer

Mastodon:
@RyunoKi@layer8.space

WHOM THIS TALK IS FOR?

Experience with Angular,
TypeScript and Webpack

Interest in security and
performance

WHAT YOU WILL LEARN TODAY

1. Steps to reproduce

2. Interpret webpack build

3. Enumerating child routes

4. Protecting routes with guards

5. Code splitting by route in Angular

BACKGROUND STORY

ldea sponsored by percidae
(https://twitter.com/percidae_public)

Chat in fourth
quarter of
2022 about
the structure

of Angular
builds

Learned about
what

information
chAanllA hAttAr

https://twitter.com/percidae_public

BEFORE WE BEGIN

Angular is used as an example
here. The following applies to
other frameworks as well. It
cannot be handled on a framework
level. The responsibility lies with
the app developer. That's YOU.

BEFORE WE BEGIN

Angular is used as an example
here. The following applies to
other frameworks as well. It
cannot be handled on a framework
level. The responsibility lies with
the app developer. That's YOU.

DEPENDENCIES

e Angularv15.0.0
e Prettierv2.8.3

O~NO O WNPE
R el E R N R

npx

ng new fosdem

cd fosdem
Because we are talking about Angular here,

let'

npm
npm
npm
npm

s fix the build

install @types/node

install merge-descriptors
install license-webpack-plugin
run build

0 N O O
e AR AR A

npx

ng new fosdem

cd fosdem
Because we are talking about Angular here,

let'

npm
npm
npm
npm

s fix the build

install @types/node

install merge-descriptors
install license-webpack-plugin
run build

Right now, we don't change anything on any file

1 $ tree dist
2 dist/
3 L— fosdem

4 — 3rdpartylicenses. txt

5 — favicon.ico

6 — index.html

7 —— main.91ffdd2e12df072d. js

8 — polyfills.451f8e5f751526a0.]js
9 —— runtime.2ad8f73bb7b39640. js
10 L— styles.ef46db3751d8e999.css
11

12 1 directory, 7 files

Right now, we don't change anything on any file

7 — main.91ffdd2e12df072d.js
8 — polyfills.451f8e5f75f526a0.]js
9 —— runtime.2ad8f73bb7b39640. js

ANATOMY OF AWEBPACK BUILD

A quick look into the files generated by Angular before
we move on

index.html

This is the app shell. Containing minimal HTML5 to
load CSS and reference the above JavaScript files.

styles.[hash].css

At this point in time it is empty. The hash is generated
by Webpack

runtime. [hash].js

Contains the Angular runtime that parses Angular
templates and manages all the dependency injection
and other magic of the framework for you

polyfills.[hash].js

Contains extensions to the browser runtime for things
Angular expects like Zone, certain Promise features or
fetch

main. [hash].js

Mainly your code + webpack boilerplate for RxJS,
Angular template parser

THE CASE

I

PO OWoO~NOOPM~WDNERE

ROUTER

// src/app/app-routing.module.ts
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

const routes: Routes = [];

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

3)
export class AppRoutingModule { }

ROUTER

// src/app/app-routing.module.ts
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

const routes: Routes = [];

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

1)
export class AppRoutingModule { }

ROUTE DEFINITION

Partial interface

// @angular/router/index.d.ts
interface Route {
path?: string;
pathMatch?: 'prefix' | 'full';
component?: Type<any>;
redirectTo?: string;
canActivate?: Array<CanActivateFn | any>;
children?: Routes;
loadChildren?: LoadChildren;

©CooO~NOOThA~ WNBE

[
O

11 }

ROUTE DEFINITION

Partial interface

3 interface Route {
4 path?: string;

6 component?: Type<any>;

ROUTE DEFINITION

Partial interface

5 pathMatch?: 'prefix' | 'full';

7 redirectTo?: string;

ROUTE DEFINITION

Partial interface

9 children?: Routes;

ROUTE DEFINITION

Partial interface

10 loadChildren?: LoadChildren;

ROUTE DEFINITION

Partial interface

8 canActivate?: Array<CanActivateFn | any>;

BEFORE ANY CHANGES

Large chunk of boilerplate bloat before starting with
implementation

function FR(e, t) {
1 & e && (C(0, "pre"), Q(1, "ng generate component xyz"), I())

GENERATING COMPONENTS

$ ng generate component page-not-found
$ ng generate component speaker # To be protected
$ ng generate component slides

No changes on build (tree-shaking)

DECLARING ROUTES

// src/app/app-routing.module.ts

/* Imports from above plus additionally */

import { SlidesComponent } from './slides/slides.component';
import { SpeakerComponent } from './speaker/speaker.component'

const routes: Routes = |
{ path: 'slides', component: SlidesComponent },
{ path: 'speaker', component: SpeakerComponent 1},

I

/* Continue as above */

I

P © O ~NO 01 bW

DECLARING ROUTES (CONTINUED)

(ui.ecmp = Xn({
type: ui,
selectors: [["app-slides"]],
decls: 2,
vars: 0,

template: function (t, n) {
1 &t && (C(O, "p"), Q(1, "slides works!"), I()

3
3));

16
17
18
19
20
21
22
23
24

DECLARING ROUTES (CONTINUED)

(li.ecmp = Xn({
type: 11,

selectors:

decls: 2,
vars: 0,
template: function (t, n) {

3
3));

18& t & (C(O,

"p"), Q(3,

[["app-speaker"]],

"speaker works!"),

I(

25
26
27
28

DECLARING ROUTES (CONTINUED)

const kR = [

I;

{ path: "slides", component: ul },
{ path: "speaker'", component: 11 },

ADDING CATCH ALL ROUTES

// src/app/app-routing.module.ts
/* Imports from above plus additionally */
import { PageNotFoundComponent } from './page-not-found/page-n

const routes: Routes = |

{ path: 'slides', component: SlidesComponent },

{ path: 'speaker', component: SpeakerComponent 1},

{ path: '', redirectTo: '/slides', pathMatch: 'full' },
{ path: "**', component: PageNotFoundComponent },

17

/* Continue as above */

REPLACE app.component.html

<!-- Remove everything inside -->
<div class="content" role="main"><!-- *snip * --></div>
<!-- Use this instead -->
<main>
<h1>{{ title }} app is running</h1>
<nav>

Slides</11i>
Speaker</1i>

</nav>
</main>

CHILD ROUTES WITHOUT GUARD

Add FormsModule to the imports inthe
AppModule

Usually go with Reactive forms for more advanced
behaviour

// src/app/speaker/speaker.component.ts
class Auth {
public password = '';

}

/* @Component decorator here */
export class SpeakerComponent {
public model = new Auth();

}

CHILD ROUTES WITHOUT GUARD
(CONTINUED)

<form #myForm="ngForm">
<label>
Enter the secret password to access special content:
<input
#password="ngMode "
name="password"
type="password"
[(ngModel)]="model.password"
required
/>
</label>

<a *ngIf="myForm.valid" routerLink="./slides">

Access speaker slides

O O ~NO O A~

CHILD ROUTES WITHOUT GUARD
(CONTINUED)

<input
#password="ngMode 1"
name="password"
type="password"
[(ngModel)]="model.password"
required

/>

CHILD ROUTES WITHOUT GUARD
(CONTINUED)

13 <a *ngIf="myForm.valid" routerLink="./slides">

CHILD ROUTES WITHOUT GUARD
(CONTINUED)

17 <router-outlet></router-outlet>

CHILD ROUTES WITHOUT GUARD
(CONTINUED)

// src/app/app-routing.module.ts
/* Same as before */
const routes: Routes = |
{ path: 'slides', component: SlidesComponent },
{
path: 'speaker',
component: SpeakerComponent,
children: [{ path: 'slides', component: SlidesComponent }]
+
{ path: "', redirectTo: '/slides', pathMatch: 'full' },
{ path: "**', component: PageNotFoundComponent 1},
1;

/* Keep as before */

LAZY-LOADING CHILD ROUTES

$ ng generate module speaker --route speaker --module app.modu

// src/app/app-routing.module.ts
/* Remove SpeakerComponent import */
const routes: Routes = |
{
path: 'speaker',
loadChildren: () => import('./speaker/speaker.module').the
}
17

/* Continue as above */

LAZY-LOADING CHILD ROUTES
(CONTINUED)

// src/app/speaker/speaker-routing.module.ts
import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

import { SlidesComponent } from '../slides/slides.component’';
import { SpeakerComponent } from './speaker.component';

const routes: Routes = [
{
path: '',
component: SpeakerComponent,
children: [{ path: 'slides', component: SlidesComponent }]

}
1:

LAZY-LOADING CHILD ROUTES
(CONTINUED)

Remove SpeakerComponent from
src/app/app.module.ts

LAZY-LOADING CHILD ROUTES
(CONTINUED)

LAZY-LOADING CHILD ROUTES
(CONTINUED)

Observe new build artifacts being generated

Lazy Chunk Files | Names | Raw Size
[hash].[hash].js | speaker-speaker-module | 5.83 kB |

WRITING A GUARD

$ ng g guard CanActivateSpeaker

Use proper Permissions implementation below

wiN

~N o o1 b~

10
11

// src/app/can-activate-speaker.guard.ts

import { Injectable } from '@angular/core';

import { ActivatedRouteSnapshot, CanActivate, UrlTree }
from '@angular/router’';

import { Observable } from 'rxjs';

export class UserToken {}
export class Permissions { canActivate(currentUser:
UserToken, id: unknown): boolean { return true; } }

@Injectable({
providedIn: 'root'

WRITING A GUARD

$ ng g guard CanActivateSpeaker

Use proper Permissions implementation below

6 export class UserToken {}
7 export class Permissions { canActivate(currentUser:
UserToken, id: unknown): boolean { return true; } }

WRITING A GUARD

$ ng g guard CanActivateSpeaker

Use proper Permissions implementation below

13
14
15
16

constructor(
private permissions: Permissions,
private currentUser: UserToken

) {3

WRITING A GUARD

$ ng g guard CanActivateSpeaker

Use proper Permissions implementation below

12 export class CanActivateSpeakerGuard implements
CanActivate {

WRITING A GUARD

$ ng g guard CanActivateSpeaker

Use proper Permissions implementation below

17 public canActivate (route: ActivatedRouteSnapshot

WRITING A GUARD

$ ng g guard CanActivateSpeaker

Use proper Permissions implementation below

19 return
this.permissions.canActivate(this.currentUser,
route.params['id']);

©Coo~NOOTLPA~ WNBE

CHILD ROUTE WITH GUARD

// src/app/app-routing.module.ts

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';
import { CanActivateSpeakerGuard, Permissions, UserToken }

const routes: Routes = [

{

path: 'speaker',

canActivate: [CanActivateSpeakerGuard],

loadChildren: () => import('./speaker/speaker.module').
T

/* Same as before */

1;

/* Added nrovider! */

CHILD ROUTE WITH GUARD

1
path: 'speaker',
canActivate: [CanActivateSpeakerGuard],
loadChildren: () => import('./speaker/speaker.module').
iy

/* Same as before */

17

/* Added provider! */
@NgModule({
imports: [RouterModule.forRoot(routes)],

exports: [RouterModule],
19 providers: [CanActivateSpeakerGuard, Permissions, UserTok

1)
export class AppRoutingModule {}

THE REMEDY

This is the part where | would like to
use Webpack's named chunks.
(https://webpack.js.org/api/module-
methods/#magic-comments)

But Angular does not support them.
(https://github.com/angular/angular-
cli/issues/16697)

https://webpack.js.org/api/module-methods/#magic-comments
https://github.com/angular/angular-cli/issues/16697

THE REMEDY

This is the part where | would like to
use Webpack's named chunks.
(https://webpack.js.org/api/module-
methods/#magic-comments)

But Angular does not support them.
(https://github.com/angular/angular-
cli/issues/16697)

https://webpack.js.org/api/module-methods/#magic-comments
https://github.com/angular/angular-cli/issues/16697

THE REMEDY (CONTINUED)

The idea being to protect that specific chunk with
HTTP headers.

Speaking of, the Security guide on Content Security
Policy (https://angular.io/guide/security#content-
security-policy) declares that at the very minimum

Angular requires

default-src 'self'; style-src 'self' 'unsafe-inline';

You can still apply SHA hashes or nonces with some
effort for protection

(ke lekarl AaviAavElAwvve ~rAnA A ICcOACNONON

https://angular.io/guide/security#content-security-policy
https://stackoverflow.com/a/68460908

THE REMEDY (CONTINUED)

If you validate the password, don't list forbidden
passwords in Angular. Otherwise these entries will be
excluded from Credential stuffing attacks
(https://owasp.org/www-
community/attacks/Credential_stuffing)

In a similar vein load password classes (length, special
characters) asynchronously to make criminals' life
harder

Best to check passwords on the server and display

validatinn arrarec froam tha racnnancno

https://owasp.org/www-community/attacks/Credential_stuffing

THE REMEDY (CONTINUED)

At least guarding paths protect them from being listed
but not from being cURLed. Therefore they can still be
enumerated for attacks.

Load more data after a successful login. Check the
Authorization header on the server!

WHAT HAVE YOU LEARNED
TODAY?

e Understanding webpack bundles
e Named chunks in Angular builds
e Content Security Policy options

e More options to secure static files

IMAGE CREDITS

Unless otherwise noted the presentation is licensed
under Creative Commons Attribution 4.0 International

Thank you

