
Online schema change at scale in TiDB
Mattias Jonsson, PingCAP



MySQL solves DDL with MDL

MDL = Meta Data Lock
The table will be locked for all sessions while 
changing the metadata.

More and more operations will copy the data 
“online”, like ADD INDEX, but the metadata change 
still needs to block! But is also within a single 
instance.

In a replication chain, each replica will 
asynchronousy run the DLL with an MDL. Also if 
not instant DDL, it will cause replication delay.



Is a distributed database different?

In a distributed database like TiDB, all client connections sees and act 
on the same data. Just as expected from a transactional, ACID 
compliant, SQL database.

Issues to solve (ADD INDEX as an example):

● No synchronous update of metadata/schemas for all cluster nodes.
● Need to create index entries for all existing rows in the table.
● Need to update entries for concurrent user changes.



How to solve it?

Proposed solution

● Version all schemas.
● Allow sessions to use current or the previous schema version.
● Use transitions, so that version N-1 is compatible with version N.

How can we create states that will allow the full transition from state 
‘None/Start’ to state ‘Public’?



Public (vN) (vN-1)

SELECT YES

INSERT YES

UPDATE YES

DELETE YES



Public (vN) (vN-1)

SELECT YES NO

INSERT YES YES

UPDATE YES YES

DELETE YES YES



Public (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO

INSERT YES YES ?

UPDATE YES YES

DELETE YES YES



Public (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO

INSERT YES YES NO - Backfill 
will handle it

UPDATE YES YES

DELETE YES YES



Public (vN+1) Write Reorg (vN) Write Only (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES

DELETE YES YES YES



Public (vN+2) Write Reorg (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES ?

DELETE YES YES YES



2 A

8 W

15 K

46 V

Table (Public)

A 2

V 46

New Index (Write Only)

Index backfill

t0: Session in 
Write Only:
Insert (46, ‘V’)



2 A

8 W

15 K

46 R

Table (Public)

A 2

V 46

New Index (Write Only)

Index backfill

t0: Session in 
Write Only:
Insert (46, ‘V’)

t1: Session before Write 
Only:
UPDATE (46, ‘R’)

?Update, since 
table is ‘Public’



2 A

8 W

15 K

46 R

Table (Public)

A 2

V 46

New Index (Write Only)

Index backfill

t0: Session in 
Write Only:
Insert (46, ‘V’)

t1: Session before Write 
Only:
UPDATE (46, ‘R’)

DELETE, but no need to INSERT



Public (vN+2) Write Reorg (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES YES*

DELETE YES YES YES ?



Public (vN+2) Write Reorg (vN+1) Write Only (vN) Delete Only (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES YES*

DELETE YES YES YES YES



Public (vN+3) Write Reorg (vN+2) Write Only (vN+1) Delete Only (vN) None/Start (vN-1)

SELECT YES NO NO NO NO

INSERT YES YES YES NO NO

UPDATE YES YES YES YES* NO

DELETE YES YES YES YES NO



More complex case

New p5

ALTER TABLE t REORGANIZE PARTITION p10 INTO
(PARTITION p5 VALUES LESS THAN (5), PARTITION p10 VALUES LESS THAN (10))

How to handle the partition swap after backfill?

New p10

Old p10



New p5

Write reorganization state

New p10

Old p10

SELECT

INSERT
UPDATE
DELETE



New p5

Public state

New p10

Old p10

SELECT

INSERT
UPDATE
DELETE



New p5

Additional state for changing where to 
read and keeping double writing!

New p10

Old p10

SELECT

INSERT
UPDATE
DELETE



TiDB Architecture

• Stateless SQL layer compatible 
with MySQL

• Apache Spark plug in • Distributed transactional key value 
storage for OLTP and Column storage 
for OLAP

SQL LAYER
NOSQL LAYER



Raft based storage

• Separate storage for 
OLTP (row) and OLAP 
(columnar)

• Raft protocol for 
replication and distribution 
of data

• Data consistency 
• Fault tolerance across 

Availability Zones



TiDB Tools
Backup/Restore

Data Migration

TiCDC

TiSpark

TiDB 
Operator

An automated 
operation and 
maintenance 
system for TiDB 
cluster in K8S

Dumpling

A Data Export Tool

Lightning

A Data Import Tool

Syncdiff

A Data Comparison 
Tool

TiUP

TiUP is a package 
manager to 
manage 
components of 
TiDB ecosystem

TiDB 
Binlog

A Data Replication 
Tool



Faster ADD INDEX in TiDB

● State transitions proven and stable.
● Similar products where faster (~3x).
● Non optimized implementation.
● Data copy/index build was done in small transaction batches.
● Only a single node as DDL owner/executer



Overview of ADD INDEX



tidb_enable_fast_ddl

● Writing entries in transactional batches is expensive and slow.
● RocksDB can ingest pre-generated SST files.
● In v6.3 we added a new way of backfilling, instead of writing to a 

new index in TiKV, generate SST files and ingest them into 
TiKV/RocksDB

● Result is ~ 3X speedup.
● And a lot less impact on concurrent load (less network, cpu and IO)

Tracking issue: github.com/pingcap/tidb/issues/35983

https://github.com/pingcap/tidb/issues/35983


Further optimizations

● Less wait between batches, better scheduling
● Use optimized Co-processor framework for reads instead of direct 

KV transactional reads
● Disconnect Read->Write dependency, make it asynchronous.
● + other smaller optimizations
● Results in 3X - 5X speedup

10x improvement since v6.1 LTS release to v6.5 LTS release!



Future optimizations

● Still only using a single TiDB node executing the DDL, we are 
currently working on how to distribute the work if resources are 
available.

● Auto tune priority between production load and DDL.



Links

● github.com/pingcap/tidb
● github.com/tikv/tikv / github.com/tikv/pd

(TiKV is a Cloud Native Computing Foundation graduate project)
● github.com/pingcap/tiflash
● OSSInsight.io Analytics/Demo site, with 5.5+ Billion github events in 

a single table.
● tiup.io for simple deploy/testing
● slack.tidb.io TiDB Community slack channel
● github.com/chaos-mesh Chaos Engineering for Kubernetes

http://github.com/pingcap/tidb
http://github.com/tikv/tikv
http://github.com/tikv/pd
https://github.com/pingcap/tiflash
http://ossinsight.io
http://tiup.io
http://slack.tidb.io
http://github.com/chaos-mesh


Thanks


