Graphing Tools for Scheduler Tracing

Julia Lawall, Inria
February 5, 2023

What is a task scheduler?

An important part of the Linux kernel:

- Places tasks on cores on fork, wakeup, or load balancing.
- Selects a task on the core to run when the core becomes idle.

- kernel/sched/core.c, kernel/sched/fair.c

What is a task scheduler?

An important part of the Linux kernel:

- Places tasks on cores on fork, wakeup, or load balancing.
- Selects a task on the core to run when the core becomes idle.

- kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.

How can a task scheduler impact application performance?

+ A scheduler has to make decisions.

- Poor decisions can slow tasks down, sometimes in the long term.

Issues: Work conservation

The machine
core0 corel core2 core3

Issues: Work conservation

The machine
core0 corel core2 core3

Where to put waking task T1?

Issues: Work conservation

The machine
core0 corel core2 core3

Where to put waking task T1?

- Maybe anywhere is fine...

Issues: Work conservation

The machine

core0 corel core2 core3
i | | |

Where to put waking task T1?

- Maybe anywhere is fine...

Issues: Work conservation

The machine

core0 corel core2 core3
i | | |

Where to put waking task T2?

Issues: Work conservation

The machine

core0 corel core2 core3
i | | |

Where to put waking task T2?
- Core 1, core 2, or core 3 might be fine.

- Core 0 would not be a good choice.

Issues: Work conservation

The machine

core0 corel core2 core3
i | T2 | |

Where to put waking task T2?
- Core 1, core 2, or core 3 might be fine.

- Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.

Issues: Locality

A two-socket machine

core0 corel core2 core3
LT H | |

Issues: Locality

A two-socket machine

core0 corel core2 core3
LT H | |

Where to put waking task T2?
- Core 1is good if T2 has previously allocated memory on that socket.
- Core 1is good if T2 communicates a lot with T1.

+ Core 2 or Core 3 could cause slowdowns.

A challenge

- The task scheduler can have a large impact on application performance.

- But the task scheduler is buried deep in the OS...

A challenge

- The task scheduler can have a large impact on application performance.
- But the task scheduler is buried deep in the OS...

- How to understand what the task scheduler is doing?

Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd -e sched -q -o trace.dat ./mycommand

Sample trace:

C1 CompilerThre-166659 [026]
<idle>-0 [062]
C1 CompilerThre-166659 [026]
java-166654 [062]

9539.524366:
9539.524369:
9539.524369:
9539.524372:

sched_wakeup:
sched_switch:
sched_switch:
sched_waking:

Cl CompilerThre:166654 [120] success=1 CPU:062
swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
Cl CompilerThre:166659 [120] S ==> swapper/26:0 [120]
comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028

10

Some help available

kernelshark: Graphical front end for trace-cmd data.

File Fiter Plots Tools Help

Pointer: [3163.915176

3153.592406

Marker B

AB Delta:

3158.744107

3163.895809

CPUO L1 L1100 0 1 N PO N P

CPU1

Search: Column[#

~) contains - Next|Prev) [¥IGraph follows

CPU_ Time Stamp Task D Latency Event Info

0 52 3153502.. tmpl72c90sh 985138 sched/sched_process_exec filename=/tmp/tmp172¢80.h pid=985138 old_pid=085138
1 52 3153592 tmpl72c90.sh | 985138 d. sched/sched_waking comm=nscd pid=1145 prio=120 target_cpu=039

2 52 3153592 tmpl72c90sh | 985138 d. schedsched_wake_idle_without_ipi cpu=39

3 52 3153502 tmpl72c90.sh | 985138 d. sched/sched_switch tmp172c90.5h:985138 [120] S ==> swapper/52:0 [120]
439 3153502 <ide> aN. sched/sched_wakeup

nscd:1145 [120) success=1 CPU:039

1

Some help available

kernelshark: Graphical front end for trace-cmd data.

File Fiter Plots Tools

Help
Pointer: [3163.915176

Marker B

A8 Deta

3153.592406 3158.744107 3163.895809

r T 1
CPUO L1 L1100 0 1 N PO N P

CPU1

Search: Column[#

~) contains

#
CRE)
152
2
3
4

Hard to get an overview,

Time Stamp | Task.

3153592
3153592
3153592
3153592
3153592

tmp172c90.sh
tmp172c90.sh
tmp172c90.5h
tmp172c90.sh
<idie>

PID
985138
985138
985138
985138 d.

[aN.

Next| Prev.

Latency Event

schedisched_process_exec
sched/sched_waking

sched/sched_wake_idle_without_ipi

sched/sched_switch
sched/sched_wakeup

“Graph follows,

Info
filename=/tmp/tmp172¢80.h pid=985138 old_pid=085138
comm=nscd pid=1145 prio=120 target_cpu=039

cpu=39

tmp172c90.5h:985138 [120] S ==> swapper/52:0 [120]
nscd:1145 [120) success=1 CPU:039

of e.g. 128 cores.

Our target: Large multicore servers

Goals for a trace-visualization tool:

- See activity on all cores at once.
- Produce files that can be shared (pdfs).

- Caveat: Interactivity (e.g., zooming) completely abandoned.

12

- dat2graph: Horizontal bar graph showing what is happening on each core
at each time.

- running_waiting: Line graph of how many tasks are running or waiting on
a rungueue at any point in time.

Both publicly available.

13

Motivating example (a commit in Linux 5.11)

commit d8fcb81flacf651ale50eaceccas3d0524984187
Author: Julia Lawall <Julia.Lawall@inria.fr>
Date: Thu Oct 22 15:15:50 2020 +0200

sched/fair: Check for idle core in wake_affine

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
Q@ -5813,6 +5813,9 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)
if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;

+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;

return nr_cpumask_bits;

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers.
The benchmarks are derived from computational fluid dynamics (CFD)
applications..”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

- N tasks on N cores.

15

UA runtimes prior to my patch

4-socket, 128 core, Intel 6130.

30 e :

20 - a

seconds

1 2 3 4 5 6 7 8 9 10
runs (sorted by increasing runtime)

UA runtimes prior to my patch

4-socket, 128 core, Intel 6130.

30 e :

20 - a

seconds

1 2 3 4 5 6 7 8 9 10
runs (sorted by increasing runtime)

Why so much variation?

UA with dat2graph

A fast run (dat2graph2 --socket-order ua..._5.dat).

core (socket order)

T — T - T — T - T T
0 5 10 15 20 25
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

UA with dat2graph

Aslow run (dat2graph2 --socket-order ua..._2.dat).

core (socket order)

0 5 10 15 20 25
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2 socketorder, duration: 28.388164 seconds

UA with dat2graph

Another perspective on the slow run.

(A Y w L ML Iy i U i “ T T \‘w‘ Ty
|
|
100
g
g
2
£
5 all threads
2 running threads
H
2
E 50
H
H
0 T T T T T
5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2_rw

The problem

- Tasks are moving around.

- Some cores are overloaded, so tasks run less often.

20

The fast run revisited

Tasks move around sometimes, for example around 3 seconds:

core (socket order)

T F— - T — T - T T
5 10 15 20 25
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

21

Zooming in

dat2graph2 --socket-order --min 3 --max 3.2 --target ua
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5.dat

core (socket order)

T - 1
3.0 3.1 32
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3 socketorder upto_3.2, duration: 3.203655 seconds

22

Focusing on the first gap

z

<

= %
<

b1 ——

g |

<9
.-
g

S Y—
=

5] e——
<

T T
3.076 3.077
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0775, duration: 3.092353 seconds

23

Focusing on the ap

What are the black lines?

core (socket order)

T T
3.076 3.077
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0775, duration: 3.092353 seconds

24

Color by command

dat2graph2 --socket-order --min 3.0755 --max 3.0765
--color-by-command

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5.dat

100
T
5
-l
g
= —— ua.C.x: 1.6038-3.0765: 72.40 (134, 128 pids)
E] keompactdX: 3.0757-3.0757: 0.0001 (4, 4 pids)
2 kworker: 3.0757-3.0757: 0.0000 (2. 2 pids) 47,79
z 50
g
0

T T T
3.0756 3.0758 3.0760 3.0762 3.0764
ua.Cx_yeti-1_5.10. emypatch_j ive_S from_3.0755 socketorder upto_3.0765 color, duration: 3.076781 seconds

25

Assessment

- Kernel threads show up from time to time, to provide needed services.
- Having high priority, they preempt the running task.
- Some tasks get behind, leading to gaps until resynchronization.

- No application-application overloads introduced.

26

Assessment

- Kernel threads show up from time to time, to provide needed services.
- Having high priority, they preempt the running task.

- Some tasks get behind, leading to gaps until resynchronization.

- No application-application overloads introduced.

- Life goes on...

26

Moving a bit to the right

100

core (socket order)

=

T T T
3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

27

Load balancing

Pid 12569 gets load balanced from core 0 to core 96 (off socket).

100 N
—_—u—
» N —
151
°
=
S
-
S
i
B}
&
2
o 50
=
e
S
Ni=————; ‘ ;
3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

28

A cascade of migrations

-+ 12569 gets load balanced from core 0 to core 96.
- 12561 wakes for core 96 but is moved to core 99.
- 12564 wakes for core 99 but is moved to core 100.

- 12568 wakes for core 100 but is moved to core 111.

29

A cascade of migrations

-+ 12569 gets load balanced from core 0 to core 96.
- 12561 wakes for core 96 but is moved to core 99.
- 12564 wakes for core 99 but is moved to core 100.
- 12568 wakes for core 100 but is moved to core 111.

- Each task finds a place on the fourth socket, but one too many tasks want to
be placed there.

29

Overload

UA-UA overload (no black dot)

100 o

core (socket order)

T T T
3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

30

Running-waiting view

100 |
3
]
£
£
= all threads
]
g running threads
é 50
3
g
0

T T T
3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5_rw_from_3.147_upto_3.153

31

Understanding the source of the overload

111

68

core (socket order)

T T T
3.13 3.14 3.15
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

- 12655 on core 68 wakes 12549 for core 111

32

Understanding the source of the overload

111

68

core (socket order)

T T T
3.13 3.14 3.15
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

- 12655 on core 68 wakes 12549 for core 111
- 11 is idle!

32

Understanding the source of the overload

111

68

core (socket order)

T T T
3.13 3.14 3.15
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

- 12655 on core 68 wakes 12549 for core 111
- 11 is idle!

- But 12549 is placed on core 111, where it has to wait for 12655

32

Understanding the source of the overload

111

68

core (socket order)

T T T
3.13 3.14 3.15
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

- 12655 on core 68 wakes 12549 for core 111
- 11 is idle!

- But 12549 is placed on core 111, where it has to wait for 12655
- Huhhh???? (Remember work conservation).

32

Understanding the source of the overload

111 - X

68

core (socket order)

T T T
3.13 3.14 3.15
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

- 111 is idle when 12655 wakes, but it was used by a kworker recently.
- The load average is non zero.
- The scheduler prefers to put 12655 on the socket of the waker.

- This socket is all full, so there is an overload (12655 has to wait).

33

Back to the patch

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
Q@ -5813,6 +5813,9 @m wake_affine_idle(int this_cpu, int prev_cpu, int sync)
if (sync &8 cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;

+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;

return nr_cpumask_bits;

34

Benefit on UA

30| = | |Ibefore
| |lafter
[9p]
2 20 H
o
(]
<10 H
O I I I I

1 2 3 4 5 6 7 8 9 10
runs (sorted by increasing runtime)

35

Benefit on another application

h2: part of the DaCapo Java benchmark suite.

after the patch (63-69 sec)

36

Conclusion

- Understanding scheduler behavior requires studying precise scheduling
actions.

- Different perspectives provide complementary information.

- Some tools that | have found useful for large multicore machines:
- dat2graph2: Who is running, when and where?

- running_waiting: How many tasks are running, how many are waiting?

- Future work: Faster graph generation? More configurability?

37

Conclusion

- Understanding scheduler behavior requires studying precise scheduling
actions.

- Different perspectives provide complementary information.

- Some tools that | have found useful for large multicore machines:
- dat2graph2: Who is running, when and where?

- running_waiting: How many tasks are running, how many are waiting?

- Future work: Faster graph generation? More configurability?

https://gitlab.inria.fr/schedgraph/schedgraph.git

37

