
Automated SBoM generation
A case study of SBoM generation in meta build systems

Joshua Watt
FOSDEM 2023

February 5th, 2023

Copyright 2022 Joshua Watt, Creative Commons BY-SA 4.0 International License



About Me

● Worked at Garmin since 2009
● Using OpenEmbedded & Yocto Project since 2016 
● Member of the OpenEmbedded Technical Steering Committee (TSC)
● Joshua.Watt@garmin.com
● JPEWhacker@gmail.com
● IRC (OFTC or libera): JPEW
● Twitter: @JPEW_dev
● LinkedIn: joshua-watt-dev

mailto:Joshua.Watt@garmin.com
mailto:JPEWhacker@gmail.com
https://twitter.com/JPEW_dev
https://www.linkedin.com/in/joshua-watt-dev


What is an SBoM?

Source: NTIA's Framing Software Component Transparency: Establishing a Common Software Bill of Material (SBOM)

https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf


Why are SBoMs important?

● What's in my Software?
○ Where did it come from?
○ What version is it?

● Am I complying with Software 
Licenses?

● Has it been tampered with?
● Is it vulnerable to exploits?
● Can deliverables be traced back 

to their code?
Sérgio Valle Duarte, CC BY 3.0, via Wikimedia Commons

What's really in here?

https://commons.wikimedia.org/wiki/File:BinaryData.jpg
https://creativecommons.org/licenses/by/3.0


"Nutrition Information" for Software

SBoM Facts
1 Serving per Device
Serving Size 1

Ingredients: bash, Linux, u-boot, sshd, 
openssl, busybox

CVEs Patched
CVE-2019-18276
CVE-2014-0160

Patches Applied

2

30

An SBoM is a method of describing the 
information about a Software Supply Chain 
using a standardized encoding that allows for 
easy exchange of data

Multiple different SBoM formats may describe 
the same Software Supply Chain



"Nutrition Information" for Software

SBoM Facts
1 Serving per Device
Serving Size 1

Ingredients: bash, Linux, u-boot, sshd, 
openssl, busybox

CVEs Patched
CVE-2019-18276
CVE-2014-0160

Patches Applied

2

30

Good Analogy, but is missing a few key points:

● Where did the software come from?
● How did it get in here?

The "Supply Chain" part



Physical Supply Chains

PCB
Assembly

Chip 
Fabrication

Enclosure
Fabrication

Final 
Assembly Packaging

User 
Manual
Printing

PCB
Fabrication

● Where do components come from?
● What is being combined at each step?
● Where does combination take place and Who did it?
● When did the combination occur?



Software Supply Chains

LibrarySource 
Code

Compiler

Executable

Source 
Code

Binaries

● Where do components come from?
● What is being combined at each step?
● Where does combination take place and Who did it?
● When did combination occur?



SPDX Build Profile

Releasing with SPDX 3.0 within a few months

● When was a Build done?
● Who wanted the build done?

○ A person
● Who actually performed the build?

○ A person, or a service like "GitHub Actions"
● How was the build done?

○ tool-specific information about how the build was performed, like command line arguments, 
etc.

○ Build time and Run time dependencies already captured by core SPDX profile
● Where was the build done?

○ Build host (maybe another SBoM)
○ Tools used (e.g. compiler, etc.) 

● What is covered by the core SPDX profile



Build SBoMs need to be generated at build 
time



SBoM Types

● Source SBoM
○ An SBoM that ships with source code, e.g. in the upstream repository

● Build SBoM
○ An SBoM generated when source code is built

● Post Mortem SBoM
○ An SBoM generated by a scanning tool after the code has been built

No one method of providing SBoMs can provide everything! Each has their 
strengths and weaknesses.



(When) Build Time

Source SBoM

No

Build SBoM

Yes

Post Mortem SBoM

Maybe

Videoplasty.com, CC BY-SA 4.0, via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0


(How) Build Time Dependencies

Source SBoM

Yes (e.g. Cargo, NPM, etc.)

Yes but not concretely

Build SBoM

Yes; build time 
dependencies have to be 
correct in order to 
successfully build

Post Mortem SBoM

Maybe; probably 
heuristically

Static libraries are 
problematic

Recipe SPDXRecipe SPDX
BUILD_DEPENDENCY_OF



(How) Runtime Time Dependencies

Source SBoM

Yes but not concretely

Build SBoM

Yes; runtime time 
dependencies have to be 
encoded in packages for 
successful installation and 
runtime behavior

Post Mortem SBoM

Shared libraries - yes

Runtime dynamically 
loaded libraries - Probably 
not

Runtime SPDXPackage SPDX
RUNTIME_DEPENDENCY_OF



(Where) Build Environment

Source SBoM

No

Build SBoM

Yes

Post Mortem SBoM

Highly unlikely, probably 
heuristically



Advantages of generating Supply Chain from Build tools 

● Authoritative
○ First hand knowledge; the tool doing the build is generating the SBoM

● Accurate
○ No guessing or heuristics are necessary for most information

● Comprehensive
○ Able to analyze most steps in assembly
○ Potentially able to report on things that may be difficult in any other context

■ E.g. static libraries, build-time & runtime dependencies for components



What can Generate Supply Chain SBoM information?

● Container Build systems
○ Docker build
○ Buildah

● Meta (distro) build systems
○ OpenEmbedded
○ Debian
○ Fedora

● Package Build systems
○ Autotools
○ cmake
○ Meson

Hélène Rival, CC BY-SA 4.0, via Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0


OpenEmbedded Example



OpenEmbedded and Yocto Project

OpenEmbedded
● Community project
● OpenEmbedded core layer
● Build system (bitbake)

Yocto Project
● Linux Foundation project
● Poky reference distribution
● Runs QA tests
● Manages release schedule
● Provides funding for personnel
● Documentation



Images

Target 
Image

SDK

eSDK

buildtools
QEMU

IPK DEB RPM

Procolotor, CC BY 3.0 via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:MME_UB8830D.jpg
https://creativecommons.org/licenses/by/3.0


Build Images from Source Code

Policy

Metadata

Source bitbake Target 
Image

Widget



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Recipe
Metadata

Source

Recipe
Metadata



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Recipe
Metadata



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages

Recipe
Metadata



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256



Software Supply Chain derived from build flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata



SPDX Generation

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata

SPDX SPDX

SPDX Archive

SPDX



SPDX Relationships

Image Index 
JSONPackage SPDX

Recipe SPDX

GENERATED_FROM
(recipe)

Recipe SPDX

GENERATED_FROM
(debug source)

BUILD_DEPENDENCY_OF

Package Files
CONTAINS

Source Code
CONTAINS

Runtime SPDX

AMENDS

Package SPDX
RUNTIME_DEPENDENCY_OF

Image SPDX

CONTAINS

OTHER



More information

Other talks that are specifically about SBoM generation in OpenEmbedded

● https://youtu.be/8X5PWa7A6pY
● https://youtu.be/6zms_qGmVqg
● https://youtu.be/h6PRf4zxnR4

https://youtu.be/8X5PWa7A6pY
https://youtu.be/6zms_qGmVqg
https://youtu.be/h6PRf4zxnR4


Build Results

● SPDX 2.2 JSON
● Minimal qemu AArch64 system
● Root file system: 14 MB (uncompressed; 2.8 MB compressed)
● Linux Kernel: 20 MB
● SPDX SBoM: 158 MB (uncompressed; 15MB compressed)

○ Sample available on request 😀



Do we really need all this data?

● It's a lot of data
● Maybe your end consumers don't care about 

this
● If you are trying to track down a supply chain 

attack, you probably do care
● Regulatory requirements may also want a 

supply chain

Much like the nutrition label vs supply chain: End 
consumers don't always see the supply chain, but 
the manufacturer does



If you work on a build tool, consider adding 
SBoM support



Questions?


