A RUST-BASED, MODULAR
UNIKERNEL FOR MICROVMS

RustyHermit @ FOSDEM 2023

Stefan Lankes, Jonathan Klimt, Martin Kroning

Stefan Jonathan Martin
@stlankes @jounathaen @mkroening

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 957246 and the Horizon
Europe project NEMO under grant agreement No 101070118.

RUSTYHERMIT

A Rust-based, modular libOS for creating Unikernels

https://github.com/hermitcore/.github/blob/cf981b4773c9ea62c7f1a05988aae0f2fc860fd7/img/hermitcore_logo.svg

UNIKERNELS ©

VM Image pTTTTTTIs TTTTTTmTmToTooes !
! : | Container Image !
: Application : L Unikernel lmage
PP : Application . : Unikernel Image
Application
! Guest OS ! Guest Userspace :
: : ! | ! LibOS

Hypervisor Container Runtime Hypervisor

Host OS Host OS Host OS

Hardware Hardware Hardware

Linux VM Container Unikernel

MICROVMS &

Might not have PCl or ACPI support
Firecracker (AWS)

QEMU microvm platform

Uhyve

RUST

https://github.com/rust-lang/rust-artwork/blob/bf0b3272f9ba8d22f7fd45e408496d05621b3b5c/logo/rust-logo-blk.svg
https://creativecommons.org/licenses/by/4.0/

WHY RUST?

Rust is productive. &
Rust is fun. &
Rust is safe. &

PROOF OF COOLNESS &

e Sum types
= aka tagged unions
= Enumerations can contain data

enum Option<T> {
None,
some(T),

}

match option ({
None => println!("We got nothing. "),
;2
Some (value) => println! ("Hurray, some {value}! &"),

SAFE RUST

https://github.com/aldeka/rustacean.net/blob/e6fc838ba206759e853ad72c6290ae826022efeb/site/more-crabby-things/safeandunsafe.svg
https://github.com/aldeka

SAFETY &

This is undefined behavior and can't happen:

e Accessinginvalid pointers X
= yse-after-free
= double-free
= out-of-bounds

e Data races

REQUIREMENTS FOR OS DEVELOPMENT

e Raw Memory access O
e Assembly code &

REQUIREMENTS FOR OS DEVELOPMENT

e Raw Memory access O
e Assembly code &

-> Not possible in Safe Rust &

UNSAFE RUST

Image from

https://github.com/aldeka/rustacean.net/blob/e6fc838ba206759e853ad72c6290ae826022efeb/site/more-crabby-things/safeandunsafe.svg
https://github.com/aldeka

UNSAFE RUST SUPERPOWERS &

e Access araw pointers

= MMIO
e Call unsafe functions

= Inline assembly

// Access raw pointers
unsafe { ptr.read volatile(value) }

// Set the highest-level page table
unsafe { asm!("mov cr3, {}", in(reg) value) }

HOW TO “\

e Rustup

e Hypervisor of your choice
= QEMU
= Uhyve
e NASM (only for x86_64 with SMP)

https://www.rust-lang.org/tools/install
https://www.qemu.org/
https://github.com/hermitcore/uhyve
https://nasm.us/

Cargo.toml

[package]

name = "hello world"
version = "0.1.0"
edition = "2021"

main.rs

fn main() {
println! ("Hello World!");

}

Cargo.toml

[package]

name = "hello world"
version = "0.1.0"
edition = "2021"

[target. 'cfg(target os = "hermit") '.dependencies]
hermit-sys = "0.4"

main.rs

fn main() {
println! ("Hello World!");

}

Cargo.toml

[package]

name = "hello world"
version = "0.1.0"
edition = "2021"

[target. 'cfg(target os = "hermit") '.dependencies]
hermit-sys = "0.4"

main.rs

#[cfg(target os = "hermit")]
use hermit sys as _;
fn main() {

println! ("Hello World!");
}

[toolchain]

BUILD “\

rust-toolchain.toml

channel = "nightly-2022-10-19"

components =

[

"rust-src"]

BUILD “\

rust-toolchain.toml

[toolchain]
channel = "nightly-2022-10-19"
components = ["rust-src"]

$ cargo build \
--target x86_ 64-unknown-hermit \
-Zbuild-std=std,panic abort \
--release

BUILD “\

rust-toolchain.toml

[toolchain]
channel = "nightly-2022-10-19"
components = ["rust-src"]

$ cargo build \
--target x86_ 64-unknown-hermit \
—-Zbuild-std=std,panic_abort \
--release

That was easy. ©

DEMO **

DEMO **

1. Clone hermitcore/rusty-demo
2. Compile

$ cargo build \
-Zbuild-std=std,panic abort \
--target x86 64-unknown-hermit

3. Run with Uhyve

$ uhyve -v target/x86 64-unknown-hermit/debug/hello_

4. Profit

https://github.com/hermitcore/rusty-demo

MODULARITY IN RUSTYHERMIT

https://github.com/hermitcore/.github/blob/cf981b4773c9ea62c7f1a05988aae0f2fc860fd7/img/hermitcore_logo.svg

KERNEL FEATURES %

[target. 'cfg(target _os =
version = "0.4"
default-features = false
features = |

"smp",

"tcp”,

"dhcpv4d ",

"acpi",

"pci",

"pci-ids",

"vga'",

"hermit") '.dependencies.hermit-sys]

Y
n

KERNEL STRUCTURE &

libhermit-rs

—— hermit-entry (Entry API)

—— hermit-sync (Synchronization Primitives)

—— linked list allocator (Allocation Algorithm)
—— uart 16550 (Serial Device Driver)

—— x86_ 64 (Architecture-Specific Abstractions)
—— pci-ids (PCI ID Database, optional)

smoltcp (TCP/IP Stack, optional)

2

THE HERMIT ECOSYSTEM @

Build Execution
Unikernel
L —> Specialized VM (Uhyve)
Application
f \V Generic VM (QEMU)
Rust Standard :
[Library } [Newlib } [RustyLoader 1
. . . Linux Boot
libhermit-rs Multiboot Protocol UEFI
(LIbOS) (x86_64) (ARM) (Experimental)

WORK IN PROGRESS @

e Further codebase oxidization
e Miri support

e More modularization

e TCP/IP stack overhaul

e Uhyve network

e Firecracker support

e ARM support

Find us at github.com/hermitcore!

https://github.com/hermitcore/

WORK IN PROGRESS @

e Further codebase oxidization
e Miri support

e More modularization

e TCP/IP stack overhaul

e Uhyve network

e Firecracker support

e ARM support

Find us at github.com/hermitcore!

Thanks for listening!

https://github.com/hermitcore/

Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority

can be held responsible for them.

