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RUSTYHERMIT

A Rust-based, modular libOS for creating Unikernels


https://github.com/hermitcore/.github/blob/cf981b4773c9ea62c7f1a05988aae0f2fc860fd7/img/hermitcore_logo.svg

UNIKERNELS ©

VM Image pTTTTTTIs TTTTTTmTmToTooes !
! : | Container Image !
: Application : L Unikernel lmage
PP : Application . : Unikernel Image
Application
! Guest OS ! Guest Userspace :
: : ! | ! LibOS

Hypervisor Container Runtime Hypervisor

Host OS Host OS Host OS

Hardware Hardware Hardware

Linux VM Container Unikernel



MICROVMS &

Might not have PCl or ACPI support
Firecracker (AWS)

QEMU microvm platform

Uhyve



RUST



https://github.com/rust-lang/rust-artwork/blob/bf0b3272f9ba8d22f7fd45e408496d05621b3b5c/logo/rust-logo-blk.svg
https://creativecommons.org/licenses/by/4.0/

WHY RUST?

Rust is productive. &
Rust is fun. &
Rust is safe. &




PROOF OF COOLNESS &

e Sum types
= aka tagged unions
= Enumerations can contain data

enum Option<T> {
None,
some(T),

}

match option ({
None => println!("We got nothing. "),
;2
Some (value) => println! ("Hurray, some {value}! &"),



SAFE RUST



https://github.com/aldeka/rustacean.net/blob/e6fc838ba206759e853ad72c6290ae826022efeb/site/more-crabby-things/safeandunsafe.svg
https://github.com/aldeka

SAFETY &

This is undefined behavior and can't happen:

e Accessinginvalid pointers X
= yse-after-free
= double-free
= out-of-bounds

e Data races



REQUIREMENTS FOR OS DEVELOPMENT

e Raw Memory access O
e Assembly code &



REQUIREMENTS FOR OS DEVELOPMENT

e Raw Memory access O
e Assembly code &

-> Not possible in Safe Rust &



UNSAFE RUST

Image from


https://github.com/aldeka/rustacean.net/blob/e6fc838ba206759e853ad72c6290ae826022efeb/site/more-crabby-things/safeandunsafe.svg
https://github.com/aldeka

UNSAFE RUST SUPERPOWERS &

e Access araw pointers

= MMIO
e Call unsafe functions

= Inline assembly

// Access raw pointers
unsafe { ptr.read volatile(value) }

// Set the highest-level page table
unsafe { asm!("mov cr3, {}", in(reg) value) }



HOW TO “\



e Rustup

e Hypervisor of your choice
= QEMU
= Uhyve
e NASM (only for x86_64 with SMP)



https://www.rust-lang.org/tools/install
https://www.qemu.org/
https://github.com/hermitcore/uhyve
https://nasm.us/

Cargo.toml

[package]

name = "hello world"
version = "0.1.0"
edition = "2021"

main.rs

fn main() {
println! ("Hello World!");

}



Cargo.toml

[ package]

name = "hello world"
version = "0.1.0"
edition = "2021"

[target. 'cfg(target os = "hermit") '.dependencies]
hermit-sys = "0.4"

main.rs

fn main() {
println! ("Hello World!");

}



Cargo.toml

[ package]

name = "hello world"
version = "0.1.0"
edition = "2021"

[target. 'cfg(target os = "hermit") '.dependencies]
hermit-sys = "0.4"

main.rs

#[cfg(target os = "hermit")]
use hermit sys as _;
fn main() {

println! ("Hello World!");
}



[toolchain]

BUILD “\

rust-toolchain.toml

channel = "nightly-2022-10-19"

components =

[

"rust-src" ]



BUILD “\

rust-toolchain.toml

[toolchain]
channel = "nightly-2022-10-19"
components = [ "rust-src" ]

$ cargo build \
--target x86_ 64-unknown-hermit \
-Zbuild-std=std,panic abort \
--release



BUILD “\

rust-toolchain.toml

[toolchain]
channel = "nightly-2022-10-19"
components = [ "rust-src" ]

$ cargo build \
--target x86_ 64-unknown-hermit \
—-Zbuild-std=std,panic_abort \
--release

That was easy. ©



DEMO **



DEMO **

1. Clone hermitcore/rusty-demo
2. Compile

$ cargo build \
-Zbuild-std=std,panic abort \
--target x86 64-unknown-hermit

3. Run with Uhyve

$ uhyve -v target/x86 64-unknown-hermit/debug/hello_

4. Profit


https://github.com/hermitcore/rusty-demo

MODULARITY IN RUSTYHERMIT



https://github.com/hermitcore/.github/blob/cf981b4773c9ea62c7f1a05988aae0f2fc860fd7/img/hermitcore_logo.svg

KERNEL FEATURES %

[target. 'cfg(target _os =
version = "0.4"
default-features = false
features = |

"smp",

"tcp”,

"dhcpv4d ",

# "acpi",

# "pci",

# "pci-ids",

# "vga'",

"hermit") '.dependencies.hermit-sys]



Y
n

KERNEL STRUCTURE &

libhermit-rs

—— hermit-entry (Entry API)

—— hermit-sync (Synchronization Primitives)

—— linked list allocator (Allocation Algorithm)
—— uart 16550 (Serial Device Driver)

—— x86_ 64 (Architecture-Specific Abstractions)
—— pci-ids (PCI ID Database, optional)

smoltcp (TCP/IP Stack, optional)
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THE HERMIT ECOSYSTEM @

Build Execution
Unikernel
L —> Specialized VM (Uhyve)
Application
f \V Generic VM (QEMU)
Rust Standard :
[ Library } [ Newlib } [ RustyLoader 1
. . . Linux Boot
libhermit-rs Multiboot Protocol UEFI
(LIbOS) (x86_64) (ARM) (Experimental)




WORK IN PROGRESS @

e Further codebase oxidization
e Miri support

e More modularization

e TCP/IP stack overhaul

e Uhyve network

e Firecracker support

e ARM support

Find us at github.com/hermitcore!


https://github.com/hermitcore/
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Thanks for listening!


https://github.com/hermitcore/
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