
Let the crabs control the packets!

Using Rust for your 
network management 
tools

Fernando F. Mancera

Senior Software Engineer

1



What we’ll 
discuss today

▸ Sockets

▸ Bindings 
everywhere!

▸ Network 
management

▸ Library and 
binary

▸ Serde

▸ Zbus

▸ Nispor & Netlink

Agenda

2



Network Management

3 Source:
https://networkmanager.dev/ 
https://nmstate.io/ 

Network management is a process that requires userspace and 

kernelspace coordination to configure the desired network state.

▸ NetworkManager is the standard Linux network configuration tool 

suite

▸ Nmstate is a library with an accompanying command line tool that 

manages host networking settings in a declarative manner.

Done easy with NetworkManager and Nmstate

Network Management

https://networkmanager.dev/
https://nmstate.io/


Library and binary

4

Programming your networking configuration tools give you flexibility.

▸ We developed our own nmstate library

▸ Nmstatectl is built using nmstate

Library and binary



Serde

5
Source:
https://serde.rs/ 

Serde is a framework for serializing and deserializing Rust data structures 

efficiently and generically.

▸ Serde allow our users to define their declarative network state

▸ Allow us to implement our own Serializer and Deserializer

▸ There are plenty of serde decorators

JSON and YAML are your friends

Serde

https://serde.rs/


Serde

6 Source:
https://nmstate.io/examples.html#interfaces-bond

JSON and YAML are your friends

Serde

https://nmstate.io/examples.html#interfaces-bond


Zbus

7
Source:
https://gitlab.freedesktop.org/dbus/zbus/-/blob/main/README.md 

Zbus is a Rust API for D-Bus communication. Safe, high- and low-level.

▸ NetworkManager provides D-Bus API

▸ Zbus + zvariant will allow us to communicate with NetworkManager

▸ Configuring and retrieving NetworkManager profiles and devices

Hello NetworkManager, how are you doing?

Zbus

https://gitlab.freedesktop.org/dbus/zbus/-/blob/main/README.md


Nispor & Netlink

8 Source:
https://github.com/nispor/nispor 
https://github.com/rust-netlink 

Nispor allow us to query real-time Linux network information using 

rust-netlink crate.

▸ Real-time Linux network information is used to perform verification 

and partial editing.

▸ Contributed to rust-netlink to extend the supported interfaces

Providing an unified interface for Linux network state querying

Nispor & Netlink

https://github.com/nispor/nispor
https://github.com/rust-netlink


Sockets

9 Source:
https://doc.rust-lang.org/std/os/unix/net/struct.UnixStream.html
https://github.com/nmstate/nmstate/blob/base/rust/src/lib/ovsdb/json_rpc.rs 

NetworkManager does not support global ovsdb configuration.

▸ Nmstate use the Rust std library for Unix stream sockets.

▸ We use serde and serde_json libraries to create our own json_rpc 

library

Communicating with ovsdb

Sockets

https://doc.rust-lang.org/std/os/unix/net/struct.UnixStream.html
https://github.com/nmstate/nmstate/blob/base/rust/src/lib/ovsdb/json_rpc.rs


Bindings everywhere

10
Source:

Bindings boost adoption from other projects/organizations.

▸ We create C bindings from our Rust library

▸ Then Python and Golang bindings from the C one

▸ And now we can still using our integration tests written in Python with 

our Rust library!

Let’s distribute the project everywhere!

Bindings everywhere



Feel free to ask questions! There are not dumb 
questions :-)

Questions?

Contact me at ffmancera@riseup.net or ffmancera@mastodon.social

11

mailto:ffmancera@riseup.net

