
Scalable graph algorithms in Rust (and Python)

1

Who?

Martin Junghanns
Senior Software Engineer
Graph Data Science at Neo4j
@s1ck@hachyderm.io

Paul Horn
Senior Software Engineer
Graph Data Science at Neo4j
@knutwalker@hachyderm.io

2

3

Our day job …

• Neo4j Graph Data Science
◦ Plugin for Neo4j Graph Database
◦ Provides a collection of graph and machine learning algorithms
◦ Customer use cases with up to 10+ bn nodes and 65+ bn edges
◦ Top 3 use cases: fraud detection, recommendation, identity resolution

• Product: https://neo4j.com/product/graph-data-science/

• Source: https://github.com/neo4j/graph-data-science/

• Docs: https://neo4j.com/docs/graph-data-science/current/

4

 Pathfinding &
 Search
• A* Shortest Path
• All Pairs Shortest Path
• Breadth & Depth First Search
• Delta-Stepping Single-Source
• Dijkstra Single-Source
• Dijkstra Source-Target
• Minimum Spanning Tree &

K-Spanning Tree
• Random Walk
• Yen’s K Shortest Path
• Minimum Directed Steiner Tree

 Centrality &
 Importance
• ArticleRank
• Betweenness Centrality & Approx.
• Closeness Centrality
• Degree Centrality
• Eigenvector Centrality
• Harmonic Centrality
• Hyperlink Induced Topic Search (HITS)
• Influence Maximization (CELF)
• PageRank
• Personalized PageRank

 Community
 Detection
• Conductance Metric
• K-1 Coloring
• K-Means Clustering
• Label Propagation
• Leiden Algorithm
• Local Clustering Coefficient
• Louvain Algorithm
• Max K-Cut
• Modularity Optimization
• Speaker Listener Label Propagation
• Strongly Connected Components
• Triangle Count
• Weakly Connected Components

 Supervised
 Machine Learning
• Link Prediction Pipelines
• Node Classification Pipelines
• Node Regression Pipelines

 … and more!

 Heuristic Link
 Prediction
• Adamic Adar
• Common Neighbors
• Preferential Attachment
• Resource Allocations
• Same Community
• Total Neighbors

 Similarity
• K-Nearest Neighbors (KNN)
• Node Similarity
• Filtered KNN & Node Similarity
• Cosine & Pearson Similarity Functions
• Euclidean Distance Similarity Function
• Euclidean Similarity Function
• Jaccard & Overlap Similarity Functions

 Graph
 Embeddings
• Fast Random Projection (FastRP)
• FastRP with Property Weights
• GraphSAGE
• Node2Vec
• HashGNN (Knowledge Graph

Embedding)

• Collapse Paths
• Graph Sampling
• Graph Stratified Sampling
• One Hot Encoding
• Pregel API (write your own algos)
• Property Scaling
• Split Relationships
• Synthetic Graph Generation

Neo4j Graph Data Science 2.3

Graph Algorithms in Rust … Why?

• Rust is a popular systems programming language known for its memory
safety, modern type system, and native performance

• We are curious, performance-focused engineers who always want to
learn more about what’s happening outside of our (JVM) box

• We like Rust and wanted to explore how a graph library for graphs with
billion+ nodes and relationships would look like and perform in Rust

5

The graph project

6

• Started in May 2021 as an experiment / hobby project
◦ Pure interest in combining Rust and graph algorithms
◦ Initial goal was to learn what level of performance we can achieve
◦ Using parallel implementations wherever possible
◦ Added more algorithms, features and API improvements over time

• Code is available on GitHub: https://github.com/s1ck/graph

The graph project

7

The graph project - crates

graph_builder*

graph*

graph_mate** appserver

* available on crates.io
** available on pypi.org8

• Graph API for building directed and undirected property graphs

The graph project - crates - graph_builder

graph_builder

graph

graph_mate appserver

2

0

1

34

let g: UndirectedCsrGraph<u64> = GraphBuilder::new()
.edges([

(0, 1),
(0, 2),
(1, 2),
(1, 3),
(2, 4),
(3, 4)

])
 .build();

assert_eq!(g.degree(1), 3);
assert_eq!(g.neighbors(2).as_slice(), &[0, 1, 4]);
assert_eq!(g.neighbors(4).as_slice(), &[2, 3]);

9

• Graph API for building directed and undirected property graphs

let g: DirectedCsrGraph<u64> = GraphBuilder::new()

.edges([
(0, 1),
(0, 2),
(1, 2),
(1, 3),
(2, 4),
(3, 4)

])
 .build();

assert_eq!(g.out_degree(1), 2);
assert_eq!(g.out_neighbors(2).as_slice(), &[4]);
assert_eq!(g.in_neighbors(4).as_slice(), &[2, 3]);

The graph project - crates - graph_builder

graph_builder

graph

graph_mate appserver

0

12

34

10

• Graph API for building directed and undirected property graphs

let g: DirectedCsrGraph<u64, u32> = GraphBuilder::new()

.edges([
(0, 1),
(0, 2),
(1, 2),
(1, 3),
(2, 4),
(3, 4)

])
.node_values([1, 3, 3, 7, 42])
.build();

assert_eq!(*g.node_value(0), 1);
assert_eq!(*g.node_value(4), 42);

The graph project - crates - graph_builder

graph_builder

graph

graph_mate appserver

0

12

34

1

33

742

11

• Graph API for building directed and undirected property graphs

let g: DirectedCsrGraph<u64, u32, f32> = GraphBuilder::new()

.edges([
(0, 1, 0.1),
(0, 2, 0.2),
(1, 2, 0.3),
(1, 3, 0.4),
(2, 4, 0.5),
(3, 4, 0.6)

])
.node_values([1, 3, 3, 7, 42])
.build();

assert_eq!(
g.out_neighbors_with_values(2).as_slice(),
&[Target::new(4, 0.5)]

);

The graph project - crates - graph_builder

graph_builder

graph

graph_mate appserver

0

12

34

1

33

742

0.10.2

0.3

0.40.5

0.6

12

• Graph API for building directed and undirected property graphs

let g: DirectedCsrGraph<u64, u32, f32> = GraphBuilder::new()

.gdl_str::<u64, _>("
 "(n0 {p: 1}), (n1 {p: 3}),
 (n2 {p: 3}), (n3 {p: 7}),
 (n4 {p: 42}),
 (n0)-[{ f: 0.1 }]->(n1),
 (n0)-[{ f: 0.2 }]->(n2),
 (n1)-[{ f: 0.3 }]->(n2),
 (n1)-[{ f: 0.4 }]->(n3),
 (n2)-[{ f: 0.5 }]->(n4),
 (n3)-[{ f: 0.6 }]->(n4)",
)
.build()
.unwrap();

The graph project - crates - graph_builder

graph_builder

graph

graph_mate appserver

0

12

34

1

33

742

0.10.2

0.3

0.40.5

0.6

13

The graph project - crates - graph_builder

• Graphs can be created programmatically as shown before

• Graphs can be created from files using GraphInput implementations
◦ EdgeList - text file containing ”source target [value]” tuples per line
◦ Graph500 - binary file storing the output of the Graph5001 data generator
◦ Serialized - binary file serialized using the graph_builder crate

• Graph creation is fully parallelized using the rayon crate2

graph_builder

graph

graph_mate appserver

1 https://graph500.org
2 https://crates.io/crates/rayon14

The graph project - crates - graph

• Provides a small set of parallel graph algorithms
◦ Page Rank
◦ Weakly Connected Components
◦ Global Triangle Count
◦ Single-Source Shortest Path

• Graph algorithms are also parallelized using the rayon crate

• Contributions are very welcome!

graph_builder

graph

graph_mate appserver

15

The graph project - crates - graph
let gdl = "(n0)-->(n1)-->(n2),(n0)-->(n2),(n1)-->(n3)-->(n4),(n2)-->(n4)";

let graph: DirectedCsrGraph<u32> = GraphBuilder::new()
 .csr_layout(CsrLayout::Sorted)
 .gdl_str::<u32, _>(gdl)
 .build()
 .unwrap();

let (scores, _, _) = page_rank(&graph, PageRankConfig::default());

let expected: Vec<f32> = vec![
 0.029999996,
 0.042749994,
 0.06091874,
 0.04816874,
 0.122724354,
];

assert_eq!(scores, expected);

0

12

34

graph_builder

graph

graph_mate appserver

16

The graph project - crates - graph_mate

● Python bindings for the graph_builder and the graph crates
○ Expose pythonic API for Rust implementation

● Memory management and parallelism done in Rust
● Integrates with numpy and pandas
● Alpha state, not everything is available yet
● Available on PyPI: pip install graph-mate

graph_builder

graph

graph_mate appserver

17

STOP! Demo Time.

18

• Uses Graph5001 dataset scale 24 (~17M nodes, ~260M edges)
◦ Generates a graph where degrees follow a power-law distribution

• Demo workflow:
1. Create directed graph from Graph500 binary graph file
2. Compute Page Rank
3. Compute Weakly Connected Components
4. Convert graph to an undirected and relabeled graph
5. Compute Triangle Count

• 3 Implementations: graph_mate, graph, pyarrow + server

Demo scenario

1 https://graph500.org/?page_id=12#sec-319

Demo 1: graph_mate (Python)

Demo 2: graph (Rust)

Demo 3: pyarrow + server

20

Lessons Learned

21

• Using Rust as a Java developer (with some understanding of the JVM)
◦ Rust paradigms require a different thinking about how to design code
◦ Mechanical sympathy improves when working with Rust
◦ Different, but nicely integrated ecosystem (Cargo, rust-analyzer, …)
◦ Debugging and profiling requires learning about tools from the C/C++ world

• What about the performance?
◦ For algorithms that we implemented in Java and Rust, we could see a better

performance in Rust for all cases
◦ Predictable runtime behaviour

• No latency spikes, consistent allocation rate
• AOT compiler and LLVM backend

Lessons Learned from building the graph project

22

Outlook

23

• What we want to work on next
◦ Add more algorithms
◦ Expand the Python and Arrow Server APIs
◦ Add algorithm framework to allow users to write their own algos
◦ Explore native capabilities even further (SIMD, GPU, …)

• The library is usable, but not battle tested
• What we need from you

◦ Feedback (reporting issues, etc.)
◦ Contributions!

• For a longer version of this talk with all demos check out YT

Outlook

24

Thank you!

Q&A offline
25

