Building a distributed search
engine with Tantivy

Harrison Burt (aka @ChillF1sh8)

¢ Living in the United Kingdom
& Software developer @Quickwit building a super awesome distributed search engine
& Creator of Inx (more on the next slide)

¢ harrison@quickwit.10

What 1s Inx?

& Search engine build on top of Tantivy, akin to Elasticsearch
or Algolia

Aimed towards user-facing search
Typo-tolerance support

Easily configurable

O R

Fast out of the box, with additional tuning parameters
available.

¢ Indexing throughput @ 30-60 MB/s

®

High-availability soon™

What 1s user facing search?

@

Relevancy is a priority, even if a
search contains a typo or two

The latency of search matters in
milliseconds

® Documents are often mutable

Search as you type means a high
throughput of searches

B algolia

bochi teh rocc X

Top Results

) a
ROCCHITHE ROCK! ’ v- ‘ 4‘
BOCCHI THE ROCK! Show By Rock!! NARUTO Spin-Off: Rock Lee & His Ninja Pals
Series + Subtitled Series + Sub | Dub Series + Subtitled

“ 33 Show By Rock!

1 Season, 12 Episodes 3 2« 7 S 6 Seasons, 72 Episodes

= Series + Subtitled 2 v“ [Series « Sub | Dub
¢ % Technoroid OVERMIND SHOW BY ROCK!! Mashumairesh!!
1 Season, 5 Episodes 2 Seasons, 24 Episodes
V2 Series + Subtitled 4#| Series +Sub | Dub
| a st
SEEMORE >

Crunchyroll’s search which retrieves results as you type.

“Tantivy 1s a full-text search engine library imnspired
by Apache Lucene and written 1n Rust.”

What i1s it?

© © . O EOE IO R EOENK I

A full-text search engine

BM25 Scoring (the same as Lucene)
Incremental indexing

Faceted search

Range queries

JSON Fields

Aggregations

Cheesy logo with a horse ‘4"‘3

And more which doesn’t fit on this slide!

QUICKWIT

N

N—

™~
e |
il
- ~

/,”\\

N

B
|
-
V4

e
—
y -
~

A basic implementation

&

%

We create a schema to define our fields
and the properties they have

We create an index using the schema we
just made and store data a temporary
directory

We can add docs to the index by creating
an indexer with a memory pool of a given
size in bytes

Calling commit will make our doc visible
to the readers.

Searchers allow us to execute queries and
get the results collected by a collector(s)

use tantivy::{Document, Index};

use tantivy::collector::{Count, TopDocs};

use tantivy::query::QueryParser;

use tantivy::schema::{Schema, STORED, TEXT};

fn main() -> tantivy::Result<()> {
// Define out schema
let mut schema_builder = Schema::builder();
let title_field = schema_builder.add_text_field("title", TEXT | STORED);
let schema = schema_builder.build();

// Indexing documents

let index = Index::create_from_tempdir(schema.clone())?;

let mut index_writer = index.writer(50_000_000)?;

let mut my_document = Document::default();
my_document.add_text(title_field, "The Old Man and the Sea");
index_writer.add_document(my_document)?;

// Commit the changes
index_writer.commit()?;

// Searching the index
let reader = index.reader()?;
let searcher = reader.searcher();
let parser = QueryParser::for_index(&index, vec![title_field]);
let my_query = parser.parse_query("\"Old Man\"").unwrap();
let my_collector = (Count, TopDocs::with_limit(10));
let (count, results) = searcher.search(&my_query, &my_collector)?;
printlin!("{count} Documents matched the query!");
for (score, address) in results {

let doc = searcher.doc(address)?;

printIn!("Got doc with score {score}: {doc:?}");

}

Ok(())

Adding typo-tolerance

@ Full_text Search].S great, but lt’s not the // Match words within the edit distance or start with the term

FuzzyTermQuery::new_prefix(
best for user experience when searching as
it doesn’t account for typos

Tantivy provides us with this in the form
of the "Fuzzy TermQuery

Uses Levenshtein distance to work out

// The query term to compare against

term,

// The maximum edit distance that can be used to match a term

max_edit_distance,

// Should transposing a word (swapping) count as a distance of 1 or 2?

transposition_cost_one,

what terms to match within a given edit 1:&:‘-1_'-‘:
distance Hello { =
Tantivy by default uses a FST (Finite state = 1 Hello
transducer) which allows for very fast Hell —= | HKell
Levenshtein distance matching on the : 7
e
|

index terms

This comes at a cost in the form of more
CPU time increasing query latency

What we’re left with on disk

& Tantivy serializes our index into
various files making up a segment

& We also have some metadata files
like “meta.json” and ".managed.json’

Name
[] meta.json
‘ 6a3ed54f605e4c1aa54087e6103e1379.fieldnorm
i 2cb6d9f1553548469026e9a44a517b31.term
. 2cb6d9f1553548469026e9a44a517b3 1.store
B 2cb6d9f1553548469026€9a44a517b31 .pos
i 2cb6d9f1553548469026e9a44a517b31.idx
‘ 2cb6d9f1553548469026e9a44a517b31.fast
i tantivy-writer.lock
i tantivy-meta.lock

[] .managed.json

Date modified

09/01/2023 10:47

09/01/2023 10:47

09/01/2023 10:47

09/01/2023 10:47

09/01/2023 10:47

09/01/2023 10:47

09/01/2023 10:47

09/01/2023 10:46

09/01/2023 10:47

09/01/2023 10:47

Type

JSON File
FIELDNORM File
TERM File
STORE File

POS File

IDX File

FAST File

LOCK File

LOCK File

JSON File

Size

3 KB

1KB

12,885 KB
3,882 KB
2,205 KB
8,267 KB
1KB

0 KB

0 KB

5KB

category: /books

overall: 5

reviewText: Typical John Grisham
reviewerName: Betty Joyce
summary: John Grisham book
timestamp: 7485388800
verified: 7

Document Id:
351476004351802258

Q_ john grishame booH

category: /books
overall: 5

reviewText: John Grisham never

reviewerName: R. Smischny
summary: John Grisham
timestamp: 7420588800
verified: 7

Document Id:
14365023511799158507

This 1s how Inx works under the hood as you can see here:

category: /books

overall: 5

reviewText: Have only read one
reviewerName: Kindle Customer
summary: John Grisham
timestamp: 7406419200
verified: 7

Document Id:
11732115424884282576

Now to wrap 1t 1n an API and ship it

16051846 results matched in 104.19 ms

category: /books

overall: 2

reviewText: What the ding dong?
reviewerName: Rick Burd
summary: John Grisham Lite
timestamp: 7347580800
verified: 0

Document Id:
3847734534659188304

category: /books

overall: 4

reviewText: Still John Grisham
reviewerName: Codis Hampton Il
summary: John Grisham
timestamp: 7447200000
verified: 7

Document Id:
7080605503852994885

Some 1ssues but nothing major

& As search traffic increases, in order to
scale we need to use bigger and bigger

machines Installation 3

® Modern cloud doesn’t make this the end
of the world

Installation 2

Instollation 1

Disaster

& Server 1s on fire
& Site unable to return search queries
¢ Loosing money

¢ Angry management waiting for you to fix
this mess

With replicas we can tolerate failure

¢ We deploy a cluster of 3 nodes, all Dact Cortre 2
replicating the same state Sy |

& FEach node 1s in a different data centre /
availability zone

Data Centre 1 | Data Centre 3

With replicas we can tolerate failure

Data Centre 2

& Data centre 3 fails, the other two replicas
can continue to serve incoming
operations.

& This also lets you do seamless upgrades /
restarts of the system (sometimes)

Dota Centre 1 |

Replicating our data across nodes

Inole_xing Queue

¢ We replicate documents not the
index itself

& The processing of each document 1s
applied by each node

& This makes our lives a bit simpler
but comes at the cost of wasting
our resources

How hard can it be...

"Tust sSpin up wmore
nodes with RPC"

The wider world 1s scary...

& We need some way on converging state

& CAP theorem becomes a thing
(Consistency, Availability, Partition-
tolerance)

¢ We must handle networks failing

Evaluating our options

The Raft way:
& Leader-base system
& Produces a replicated log of operations

& Pre-made implementations of Raft in
Rust

& Very strict set of rules in order to be
correct

The eventually consistent way:
& A leader-less system
& Operations are idempotent

& Gives us more freedom to change our
replication behaviour should we wish

Evaluating our options

The Raft way:
& Leader-base system
& Produces a replicated log of operations

& Pre-made implementations of Raft in
Rust

& Very strict set of rules in order to be
correct

The eventually consistent way:
& A leader-less system
& Operations are idempotent

& Gives us more freedom to change our
replication behaviour should we wish

Using eventual consistency

The leader re_lo.ys these documents as an e_n'try
sent to peers

|' \‘

Client sends documents

to a node to be indexed ./ y peer must acknowledge_ the e_n'try
= :’ Nod 1 “|< ;” \\\
< : e T\ WNode 3
. \\ ’, \\ f!
Once o selected number of peers
have a.c.knowle,dge_d the write we retum OK.

Some 1ssues

¢ How do we implement this? -
¢ How do we make this easier to test?

Luckily the work has been done for us

Datacake provides all of the tooling for creating
distributed systems:

& Zero-copy RPC framework with simulation
support

& Membership and failure detection wrapping
“chitchat

& Pre-built eventually consistent store for small-
1sh key-values

& Pre-built storage implementations

& CRDT implementations and hybrid logical
clocks

https://github.com/Inx-search/datacake

let addr ="127.0.0.1:8080".parse::<SocketAddr>()?;
let connection_cfg = ConnectionConfig::new(

addr,

addr,

Vec::<String>::new(),

);

let node = DatacakeNodeBuilder::<DCAwareSelector>::new(1, connection_cfg)
.connect()
.await?;

let store = node
.add_extension(EventuallyConsistentStoreExtension::new(MemStore::default()))
.await?;

let handle = store.handle();

handle
.put(
"my-keyspace”,
i,
b"Hello, world! From keyspace 1.".to_vec(),
Consistency::All,
)

.await?;

https://github.com/lnx-search/datacake

Creating the cluster

let node_1 = DatacakeNodeBuilder::<DCAwareSelector>::new(1, connection_cfg_1)
.connect()
.await?;

let node_2 = DatacakeNodeBuilder::<DCAwareSelector>::new(2, connection_cfg_2)
.connect()
.await?

let node_3 = DatacakeNodeBuilder::<DCAwareSelector>::new(3, connection_cfg_3)
.connect()
.await?;

node 1
.wait_for_nodes([2, 3], Duration::from_secs(30))
.await?;

node 2
.wait_for_nodes([1, 3], Duration::from_secs(30))
.await?;

node 3
.wait_for_nodes([2, 1], Duration::from_secs(30))
.await?;

Extensions

. . d k de::{Cl E ion, D keNode};

¢ Add new functionality to the already e aoyne et Bl ool

runnlng cluster pub struct MyExtension;
® Can be dynamlcaﬂy added or removed f*i)slygﬁj_sigltz]xtension for MyExtension {

type Output = ();

& Have access to all of the utility methods e Error= MyError

the cluster provides (Cluster Clock, RPC e niniexiension(

de: &DatacakeNode,
network7 etc.)) -:??:suIt<geah(‘::?oitpczjt,eSelf::Err0r> {
/I In here we can setup our system using the live node.

® They can be a Simple or as CompleX as /I This gives us things like the cluster clock and RPC server:

needed printin!("Creating my extension!");

let timestamp = node.clock().get_time().await;
printin!("My timestamp: {timestamp}");

Ok(0)
}
}

pub struct MyError;

The eventually consistent store

& A pre-made extension adding an eventually

let store = node

' .add_extension(EventuallyConsistentStoreExtension::new(MemStore::default()))

consistency key-value store to the cluster s

& Adjustable consistency levels let handle = storehandle);
.. handl
® Concept of keyspaces for organising ot
"my-keyspace",
documents 0
A b 4 - b"Hello, world! From my-keyspace.".to_vec(),

& Single storage trait for applying operations | Consstencyzl

to a persistent store await?;

¢ Not suitable for billion key scale databases

Combining 1t with tantivy

¢ We can combine the eventual consistency [Dot acoks]
storage trait with tantivy acting as our \ﬂ ,’\
persistent store

& Fetching, deleting and indexing documents [Wy i]
as part of our operation using tantivy’s in y f\
built doc store L Disk J

¢ Simple demo available
https://github.com/ChillFish8/tantivy-demo

INFO Prepared commit 19557

INFO committing 19557

INFO save metas

INFO Running garbage collection
INFO Garbage collect

INFO Indexing complete! elapsed=422.7787ms num_doc=19547

https://github.com/ChillFish8/tantivy-demo

The end!

Questions!

Harrison Burt (harrison@quickwit.10)

Lnx
https://github.com/Inx-search/Inx

Quickwit
https://quickwit.io/

Datacake
https://crates.io/crates/datacake

Replicated Tantivy Demo
https://github.com/ChillFish8/tantivy-demo

https://github.com/lnx-search/lnx
https://quickwit.io/
https://crates.io/crates/datacake
https://github.com/ChillFish8/tantivy-demo

	Slide 1: Building a distributed search engine with Tantivy
	Slide 2: Harrison Burt (aka @ChillFish8)
	Slide 3: What is lnx?
	Slide 4: What is user facing search?
	Slide 5: “Tantivy is a full-text search engine library inspired by Apache Lucene and written in Rust.”
	Slide 6: What is it?
	Slide 7: A basic implementation
	Slide 8: Adding typo-tolerance
	Slide 9: What we’re left with on disk
	Slide 10: Now to wrap it in an API and ship it
	Slide 11: Some issues but nothing major
	Slide 12: Disaster
	Slide 13: With replicas we can tolerate failure
	Slide 14: With replicas we can tolerate failure
	Slide 15: Replicating our data across nodes
	Slide 16: How hard can it be…
	Slide 17: The wider world is scary…
	Slide 18: Evaluating our options
	Slide 19: Evaluating our options
	Slide 20: Using eventual consistency
	Slide 21: Some issues
	Slide 22: Luckily the work has been done for us
	Slide 23: Creating the cluster
	Slide 24: Extensions
	Slide 25: The eventually consistent store
	Slide 26: Combining it with tantivy
	Slide 27: The end!

