
Backward and forward compatibility for security 

features (illustrated with Landlock)

FOSDEM – Rust devroom

2023-02-04

Mickaël Salaün

https://creativecommons.org/licenses/by-sa/4.0/
https://digikod.net/


Why care 

about security?

An innocuous and trusted process can become 

malicious during its lifetime because of bugs 

exploited by attackers. Every running app/service 

increases (user) attack surface.

Problem (as developers):

• We don’t want to participate to malicious 

actions through our software.

• Responsibility for users, especially to protect 

their (personal) data (e.g., pictures, ~/.ssh).

• What about potentially malicious third-party

libraries?



Security 

sandboxing

A security approach to isolate a software 

component from the rest of the system by 

dropping ambient access rights which are not 

needed.

NB:

• Namespaces/containers are not considered security 

sandboxes per se, but tools to “virtualize” resources, with

their own vulnerabilities.

• seccomp is not an access control system (e.g., no file

access restrictions).



Landlock: the 

Linux 

sandboxing 

solution

Landlock is an access control system available to 

unprivileged processes on Linux, which enables 

developers to add built-in application 

sandboxing.

Create new security layers in addition to the 

existing system-wide access-control.

Available in mainline since 2021 (Linux 5.13), and 

enabled by default on multiple distros: Ubuntu 

22.04 LTS, Fedora 35, Arch Linux, Alpine Linux, 

Gentoo, Debian Sid, chromeOS, CBL-Mariner, 

WSL2

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/jammy/commit/?id=dd51cf78272d9e36270796a563c801d251d7f06c
https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/jammy/commit/?id=dd51cf78272d9e36270796a563c801d251d7f06c
https://gitlab.com/cki-project/kernel-ark/-/commit/6970e5d6cb60a5eef2443cc0683c58a5d4531639
https://aur.archlinux.org/cgit/aur.git/commit/?h=linux-mainline&id=c00e40103af7018ef2c235121a6726b47a14858d
https://gitlab.alpinelinux.org/alpine/aports/-/commit/b49410ac39b3c9ef46434b9d5daa79f2c845015e


Tailored and 

embedded 

security policy

Developers are in the best position to reason 

about the required accesses according to 

legitimate behaviors:

• Application semantics

• Static and dynamic configuration

• User interaction

Testable and can be kept in sync with evolving 

business logic over time.



The Rust library Idiomatic Rust API leveraging strong typing and 

common patterns (e.g., builder for objects and 

their references).

Still working on getting the API right, especially 

with the compatibility constraints explained in 

this talk.

Some early public users of rust-landlock:

• Keysas: USB virus cleaning station

• Birdcage: Cross-platform embeddable sandboxing

• rust-wasm-landlock: An integration between Wasmtime

and Landlock

https://github.com/r3dlight/keysas
https://github.com/phylum-dev/birdcage
https://github.com/micheleberetta98/rust-wasm-landlock
https://github.com/micheleberetta98/rust-wasm-landlock


Code examples The following simple examples are correct but:

• The C code doesn’t check for compatibility 

issues whereas the Rust code does

• The Rust code doesn’t leverage the implicit 

access right conversion from a specific (and 

tested) Landlock version

Underneath, they rely on 3 new dedicated 

syscalls.



Step 1: Create a ruleset

int ruleset_fd;

struct landlock_ruleset_attr ruleset_attr = {

.handled_access_fs =

LANDLOCK_ACCESS_FS_EXECUTE |

LANDLOCK_ACCESS_FS_WRITE_FILE,

};

ruleset_fd = landlock_create_ruleset(&ruleset_attr,

sizeof(ruleset_attr), 0);

if (ruleset_fd < 0)

error_exit("Failed to create a ruleset");

Ruleset::new()

.handle_access(make_bitflags!(

AccessFs::{Execute | WriteFile}))?

.create()?



Step 2: Add rules

int err;

struct landlock_path_beneath_attr path_beneath = {

.allowed_access = LANDLOCK_ACCESS_FS_EXECUTE,

};

path_beneath.parent_fd = open("/usr",

O_PATH | O_CLOEXEC);

if (path_beneath.parent_fd < 0)

error_exit("Failed to open file");

err = landlock_add_rule(ruleset_fd,

LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);

close(path_beneath.parent_fd);

if (err)

error_exit("Failed to update ruleset");

Ruleset::new()

.handle_access(make_bitflags!(

AccessFs::{Execute | WriteFile}))?

.create()?

.add_rule(

PathBeneath::new(PathFd::new("/usr")?)

.allow_access(AccessFs::Execute)

)?



Step 3: Enforce the ruleset

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

error_exit("Failed to restrict privileges");

if (landlock_restrict_self(ruleset_fd, 0))

error_exit("Failed to enforce ruleset");

close(ruleset_fd);

Ruleset::new()

.handle_access(make_bitflags!(

AccessFs::{Execute | WriteFile}))?

.create()?

.add_rule(

PathBeneath::new(PathFd::new("/")?)

.allow_access(AccessFs::Execute)

)?

.restrict_self()?



Incremental 

development

Because it is complex, a new kernel access 

control system cannot implement everything at 

once.

Landlock is useful as-is and it is gaining new 

features over time, which may enable to either 

add or remove restrictions.



Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1



Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

• Reparent files

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1

Landlock v2

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files



Restrictions evolution over versions

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Configurable

• Read file

• Write file

• …

• Reparent files

• Truncate file

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …

Landlock v1

Landlock v2

Landlock v3

Always denied

• Get new privileges

• Ptrace a parent sandbox

• Change FS topology

• Reparent files

Always allowed

• Change directory

• Read file metadata

• Change file ownership

• IOCTL

• Truncate file

• …



Application 

compatibility

Forward compatibility for applications is handled 

by the kernel development process (quite like the 

Rust #[non_exhaustive] type attribute).

Backward compatibility for applications is the 

responsibility of their developers, who may not 

be aware of the kernel on which their 

application will run.

Each new Landlock feature increments the 

Landlock ABI version, which is useful to 

implement a fallback mechanism: best-effort 

approach.



Check the Landlock ABI version (in C)

int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);

if (abi < 0)
return 0;



Property #1: 

Ease of use

Defining the right access scope may be 

challenging and the API should help developers 

as much as possible.

Requirements:

• Generic API (and types) to incrementally build

a set of access rules before enforcing them

• No knowledge of Landlock internals required: 

should focus on required accesses

• Enable fine-grained and coarse-grained

access rights

• Simpler to write for common use cases



Group access rights per ABI

let abi = ABI::V2;

Ruleset::new() 
.handle_access(AccessFs::from_all(abi))?
.create()?
.add_rule(

PathBeneath::new(PathFd::new("/usr")?)
.allow_access(AccessFs::from_read(abi))

)



Property #2: 

Strict 

restrictions

Detect and error out for any incompatibility.

Use cases:

1. For developers and CI tests, to be sure that 

sandboxing is not an issue for legitimate use

2. For security software, to be sure that a set of 

security properties are guarantee

Requirement:

• Being able to force the whole sandboxing or 

error out if a required feature is not supported 

(e.g., the refer access right for file reparenting).



Property #3: 

Best-effort with 

minimal 

requirement

Enforce restrictions as much as possible 

according to the running kernel: don’t break my 

application!

Use case:

• For end users, opportunistically sandbox 

applications without error

Requirements:

• Being able to disable the whole sandboxing if 

a required feature is not supported (e.g., the 

refer access right for file reparenting).

• Make this approach easier to write



Property #4: 

Runtime 

configuration 

with maximum 

execution

Should be simple to set or unset at run time 

according to:

• Test environment (e.g., build profile, variables)

• User configuration

Help identify sandboxing specific code issues.

Requirement:

• Run the same code as much as possible (i.e., 

same behavior: check same files, make same 

syscalls…) but only enforce restrictions when 

requested.



1st approach: set_best_effort()

Ruleset::new() 
.handle_access(AccessFs::from_all(ABI::V1))?
.set_best_effort(false)
.handle_access(AccessFs::Refer)?
.set_best_effort(true)

Pros:

• Flexible

• Easy to understand

Cons:

• Return an error right away instead of ignoring the whole sandbox when specific features 

are missing

• Change the ruleset behavior over build steps, which makes it likely to forget to “reset” it



2nd approach: set_compatibility()

Ruleset::new() 
.handle_access(AccessFs::from_all(ABI::V1))?
.set_compatibility(CompatLevel::SoftRequirement)
.handle_access(AccessFs::Refer)?
.set_compatibility(CompatLevel::BestEffort)

Pros:

• Flexible

• Handle soft requirement: disable the whole sandbox when specific features are missing

Cons:

• More complex with three choices: BestEffort, SoftRequirement, HardRequirement

• Change the ruleset behavior over build steps, which makes it likely to forget to “reset” it



3rd approach: Ruleset constructor and Access attribute

Ruleset::new(CompatMode::ErrorIfUnmet)
.handle_access(AccessFs::from_all(ABI::V1))?
.handle_access(AccessFs::Refer.disable_sandbox_if_unmet(true))?

Pros:

• Flexible

• No need to reset the ruleset compatibility state

• Simpler and more explicit

Cons:

• A bit verbose when used



Going forward • Improve ease of use with type inference

• Add new helpers

• Improve documentation

• Sandbox your applications and others’

• Secure Open Source Rewards

• Google Patch Rewards

https://sos.dev/
https://bughunters.google.com/about/patch-rewards


Questions or ideas?

Current documentation: https://landlock.io/rust-landlock

Ongoing compatibility PR: https://github.com/landlock-lsm/rust-landlock/pull/12

Go talk: https://blog.gnoack.org/post/go-landlock-talk/

Past talks: https://landlock.io

landlock@lists.linux.dev

Thank you!

https://landlock.io/rust-landlock
https://github.com/landlock-lsm/rust-landlock/pull/12
https://blog.gnoack.org/post/go-landlock-talk/
https://landlock.io/
mailto:landlock@lists.linux.dev

	Slide 1: Backward and forward compatibility for security features (illustrated with Landlock)
	Slide 2: Why care about security?
	Slide 3: Security sandboxing
	Slide 4: Landlock: the Linux sandboxing solution
	Slide 5: Tailored and embedded security policy
	Slide 6: The Rust library
	Slide 7: Code examples
	Slide 8: Step 1: Create a ruleset
	Slide 9: Step 2: Add rules
	Slide 10: Step 3: Enforce the ruleset
	Slide 11: Incremental development
	Slide 12: Restrictions evolution over versions
	Slide 13: Restrictions evolution over versions
	Slide 14: Restrictions evolution over versions
	Slide 16: Application compatibility
	Slide 17: Check the Landlock ABI version (in C)
	Slide 18: Property #1: Ease of use
	Slide 19: Group access rights per ABI
	Slide 20: Property #2: Strict restrictions
	Slide 21: Property #3: Best-effort with minimal requirement
	Slide 22: Property #4: Runtime configuration with maximum execution
	Slide 23: 1st approach: set_best_effort()
	Slide 24: 2nd approach: set_compatibility()
	Slide 25: 3rd approach: Ruleset constructor and Access attribute
	Slide 26: Going forward
	Slide 27: Questions or ideas?

