
A Rusty CHERI
The path to hardware capabilities in Rust Lewis Revill

<lewis.revill@embecosm.com>

Introduction

Lewis Revill
○ Compiler engineer working for Embecosm
○ LLVM backends for constrained architectures

Embecosm
○ Software services company
○ Operate on the boundary between hardware and software
○ Solve difficult and interesting problems, like compilers

What is CHERI?

● Capability Hardware Enhanced Risc Instructions

● Instruction set extension

● Encodes access constraints on addresses* with capabilities

● Capability operations replace pointer operations
○ Purecap mode: all pointers are capabilities
○ Hybrid: some pointers are capabilities

● Spatial, referential & temporal safety enforced at runtime

Integrating CHERI & Rust

● Project led by our customer CyberHive
○ Funded by Digital Security by Design

● Goal: produce a Rust compiler that can target CHERI-based architectures
○ Long term goal: production-ready code for security purposes
○ Initially targeting ARM’s Morello platform

Motivation

● Another layer of protection

● Constraints identified at compile-time, enforced at runtime

● Unsafe Rust code can have safety constraints

● Other side benefits
○ Hardware bounds checking
○ Replace Rust arrays/’fat pointers’ with capabilities

Motivating Example

use std::io::stdin;

fn main() {
 let arr = [1, 2, 3, 4];
 let mut ptr = arr.as_ptr();

 let mut input = String::with_capacity(1);
 stdin().read_line(&mut input).expect("Error reading input");
 let idx: usize = input.trim().parse()
 .expect("Error parsing number");

 unsafe {
 ptr = ptr.add(idx);
 print!("{}\n", *ptr);
 }
}

How to Integrate CHERI & Rust

● Account for pointer (capability) types where type size != addressable range

● Different address space for capabilities in datalayout

● Different pointer types for different address spaces in datalayout

● Provenance and bounds propagated with capabilities

● Optional stuff
○ Replace bounds checking with capabilities
○ Replace arrays/’fat pointers’ with capabilities

Progress

● Datalayout changes completed
○ Can specify capability sizes and address spaces for purecap or hybrid

mode

● Mandatory address space parameters in APIs

● Differentiate ty_size/total_size and val_size in APIs
○ EG LayoutS, AllocRange, Primitive, …
○ Most fundamental change by far

● Create invalid (non-dereferencable) capabilities from mem::transmute

● Current state: fixing assertion failures when building core/compiler_builtins

Future Changes

● Modifications to core/compiler_builtins/std…

● How to specify capability types in hybrid mode?
○ Rust annotations don’t seem the right tool
○ Library solution?

● Comprehensively evaluate uses of ty_size - should they be using val_size?

● Testing, polish

Similar Work

● Nicholas Sim (Univ. of Cambridge) Master’s thesis 2020
○ Series of patches which set both pointer & usize width to capability width

● University of Kent
○ Implementation compiles and runs for Morello purecap
○ Based on Rust 1.56.0

● Others?

Thank you

github.com/lewis-revill/rust-cheri

