
OpenTripPlanner
Past, Present and the Future
Hannes Junnila
FOSDEM 2023 — 4 February 2023

About me

Tinkered with OTP since ~2011
• City of Helsinki 2014
• Helsinki Region Transport &

Digitransit 2015–2018
• Kyyti 2020
• Entur 2021–

Agenda
Past — OpenTripPlanner 1

Present — OpenTripPlanner 2
• How it works
• New features
• Sandbox extensions
• Simplified setup

Future — Roadmap

Past

Pain points with OTP 1

Time-dependent A* search with trip banning
• Insufficient performance for nationwide

deployments
• Focus on research capabilities

• Solved by split into OTP and R5
• Lack of architectural vision and focus
• Fragmented development

• Each organization had its own fork

Run search

Ban trips in
found path

Present

OTP Routing Process

Flex Search

Extends the stops the user can
reach by utilizing flexible

transit, which has no fixed
timetables/route

Transfer Optimizer

Optimizes where to transfer
between each leg pair in the

itineraries

Street Search

Searches for the nearest stops,
where the user can board a

transit vehicle

Itinerary Filtering/Decorating

Filters down the itineraries
presented to the user and

enriches them eg. with price

Transit Search

Searches the scheduled routes
between the stops close to the

origin and destination

API Routing Request API Routing Response

Street Search

Fixed Route

09:00

09:05

09:08
09:12 09:15 09:20

09:24
09:30

Hail and Ride Sections

09:00

09:05

09:08
09:12 09:15 09:20

09:24
09:30

● Fixed route and schedule

● Between stops 3 and 6, you can board or
alight anywhere along the route

Flexible Areas

Area A
● Door to door anywhere within a service area

Flexible Areas

Area A

● One area for boarding and another for alighting

Area B

Area A
Area B

Area C

● Any number of areas, some with only boarding
some with only alighting

Flexible Areas

Fixed Stops in an Area

Area A

● Stop to stop within an area

Area A

● Area to stop and vice versa

Feeder services

Complex services

Area A

Area B

Raptor
• Raptor works in rounds

• Implicit graph model using memory layout
• One round for each transit trip & transfer
• Exploring the transit network following transit routes.
• Find all pareto optimal paths by

• [Arrival time | Number of transfers] – Given departure time
• Range Raptor

• Iterates backwards over departure time within a search window
• Only explores new trips not reached by previous rounds
• Pareto optimal by

• [Departure time | Arrival time | Number of transfers]
• Multi-criteria Range Raptor

• One or more additional criteria – with performance penalty
• Pareto optimal by

• [Departure time | Arrival time | Number of transfers | Generalized cost]

State Transit
Strategy

Search
direction Optimization Result Response

time

Standard Standard Forward - Paths [time, transfers] 66 ms

Standard Standard Reverse - Paths [time, transfers] 68 ms

BestTime Standard Forward - Best time & hops, No paths 63 ms

BestTime Standard Reverse - Best time & hops, No paths 60 ms

Standard NoWait Forward 1 iteration Paths [time, transfers] 49 ms

Standard NoWait Reverse 1 iteration Paths [time, transfers] 48 ms

BestTime NoWait Forward 1 iteration Best time & hops, No paths 41 ms

BestTime NoWait Reverse 1 iteration Best time & hops, No paths 37 ms

MC MC Forward - Paths [time, transfers, cost] 508 ms

MC MC Forward Heuristic Destination
Check

Paths [time, transfers, cost] 320 ms

28
Samples

Search
Window
2 - 20 h

Dataset
Norway

Where to transfer between a pair of trips?
● Transfer priority cost

● Station transfer priority*
● Guaranteed transfers
● In-seat transfers

● Optimal wait time
● Avoid very short transfer times*
● Avoid back-travel*

* Not in raptor

Transfer optimization

Itinerary Filtering
& Decorating

• Limit the number of results
• Worse but optimal results
• Grouping too similar results
• Park & ride, where the car is

parked almost immediately

• Decorate results
• Real-time alerts
• Price calculation

• Sorting of results

• New internal data model independent of the import format
• OTP 1 used GTFS POJOs internally

• New entities from NeTEX not existing in GTFS

Different formats have different benefits
• GTFS

• Easy to produce and consume
• YAGNI — Requires producer and consumer before appending spec

• Netex
• Much more complex and nuanced
• Caters for almost all use cases

NeTEx–GTFS

• New feature in OTP 2 for code not suited for core
• Extremely successful, currently 22 extensions

• New APIs
• GraphQL
• Travel time
• Vector tiles

• New data formats
• Data overlay
• SIRI

• New functionality under development
• GTFS-Fares v2
• GTFS-Flex v2

• Deployment-specific code
• Non-GBFS vehicle rental updaters
• Cloud integrations

Sandbox extensions

GraphQL APIs

Two APIs with
different
vocabularies

• GTFS
• Transmodel

Vector tiles

• Mapbox vector tile format
• Multiple layer types available

• Stops & stations
• Rental stations & vehicles
• Car and bike parking

• Configurable mapping from
internal model to tile layer

• Real-time info
• Multilingual

• Requested feature from OTP 1
• Two output formats

• GeoJSON — isochrones
• GeoTIFF — travel time rasters

• Configurable street & transit
modes

Travel time
analysis

Simplified operations

• Abstracted data sources
• Local file system
• HTTPS
• Cloud storage services

• GCP storage
• Azure blob storage
• AWS S3 (open PR pending somebody using it)

• All input and output paths can be configured
• Data can be read from or written to an data source

• Improved monitoring support
• Prometheus endpoint

https://docs.opentripplanner.org/en/dev-2.x/BuildConfiguration/

//build-config.json
{
 "transitModelTimeZone": "Europe/Brussels",
 "osmCacheDataInMem": "true",
 "osm": [
 {
 "source": "https://download.geofabrik.de/europe/belgium-latest.osm.pbf",
 "osmTagMapping": "germany"
 }
],
 "transitFeeds": [
 {
 "type": "gtfs",
 "feedId": "NMBS",
 "source": "http://gtfs.irail.be/nmbs/gtfs/latest.zip"
 },
 {
 "type": "gtfs",
 "feedId": "LIJN",
 "source": "http://gtfs.irail.be/de-lijn/de_lijn-gtfs.zip"
 },
 {
 "type": "gtfs",
 "feedId": "TEC",
 "source": "https://gtfs.irail.be/tec/tec-gtfs.zip"
 },
 {
 "type": "gtfs",
 "feedId": "MIVB",
 "source": "https://gtfs.irail.be/mivb/mivb-gtfs.zip"
 },
]
}

Future

Performance

Competition neutrality

• New Raptor criteria
• Fixed size bitset for used authority/operator group

• Operator 1, departure from A at 18:00, arrival at B at 21:00
• Operator 2, departure from A at 18:01, arrival at B at 20:59
• => Only operator 2 is showing up

Unified GraphQL API

• Currently two GraphQL APIs and one REST API
• Deprecate REST API

• New unified GraphQL API
• One structure
• Two dialects, GTFS and Transmodel
• Use translation file go from internal model to API

Useful links

• https://www.opentripplanner.org/

• https://docs.opentripplanner.org/en/dev-2.x/

• https://github.com/opentripplanner/OpenTripPlanner

• https://gitter.im/opentripplanner/OpenTripPlanner

• https://otp-performance.leonard.io/

https://www.opentripplanner.org/
https://docs.opentripplanner.org/en/dev-2.x/
https://github.com/opentripplanner/OpenTripPlanner
https://gitter.im/opentripplanner/OpenTripPlanner
https://otp-performance.leonard.io/

