Writing a Telegram Antispam Bot
in Python:

An introduction to async
programming

FOSDEM 2023 - 05.02.2023

Brussels, Belgium

Marc-André Lemburg :: eGenix.com GmbH

mailto:info@egenix.com

Speaker Introduction

* Marc-André Lemburg

Python since 1994

Studied Mathematics

CEO eGenix.com GmbH

Consulting CTO, Senior Solutions Architect and Coach
EuroPython Society Fellow and former Chair

Python Software Foundation Fellow

Python Core Developer

Based in Diisseldorf, Germany

More and for connecting: http://malemburg.com

mailto:info@egenix.com
https://www.egenix.com/
http://malemburg.com/

Motivation: Writing a Telegram Antispam Bot

D
Our Python Meeting Disseldorf
. id=1396796441) to group "PyDDF - Python Meeting Dusseldorf
user group has been getting lots
of signup spam since early last year

Banned "Michael” (username=None, id=1396736441) fromgroup
PyDDF Python Meeting Dusseldorf” for 3600 seconds

PyDDF Group Bot Rep
Processing application by "Valentine Hamon" (username=None,
id=5059251228) to group "PyDDF - Python Meeting Disseldorf"

— No longer possible to handle those manually

Banned "Valentine Hamon" (username=Mone, id=5059251288) from
group "PyDDF - Python Meeting Dusseldorf" for 3600 seconds

Issues

Processing application by "James Fortin” (username=None,
1d=5068287283) to group "PyDDF - Python Meeting Dusseldorf”

Link Spam

Crypto Spam

Shady Offers

Scraping of contact infos i ORE yumen

Withdrawal of 2000 EUR successfully some minutes ago

Banned "James Fortin” (username=hone, id=50682875323) from
® group "PyDDF - Python Meeting Dasseldorf" for 3600 seconds

https/it.mefjoinchat/KIQroKv_TO2¥2MO

1 i

mailto:info@egenix.com
https://pyddf.de/

Solution: Write a low resource, scalable TG bot

* Use a scalable Python library for writing Telegram Bots:

pyrogram

— Fairly new library, actively maintained

— Fully asynchronous

— Uses the Telegram API directly (without proxy)
— Open Source: LGPL 3

mailto:info@egenix.com
https://pypi.org/project/Pyrogram/

But what'’s this “asynchronous programming” ?

Let’s have a look at
different execution models...

— Synchronous execution
— Threaded execution

— Asynchronous execution

mailto:info@egenix.com

Terminology: Synchronous / Threaded / Asynchronous

* Synchronous

— All instructions are executed one after another
— 1/O and similar external resources cause execution to wait

— Timing is not a problem. Everything is deterministic.

— Problem: Waiting is not an efficient use of resources :-)

mailto:info@egenix.com
https://pixabay.com/photos/animals-waterfowl-ducks-young-737407/

Terminology: Synchronous / Threaded / Asynchronous

* Threaded

— Several synchronous parts of the program run in parallel,
using OS threads

— Execution is controlled by the OS, not the application
— Threads are often assigned to different CPU cores

— Problem: Sequence of execution is not necessarily deterministic
— Problem: Unexpected delays can happen o, -
— Problem: Sharing data is hard - requires locks

Problem: OS overhead

Advantage: Efficient use of resources

mailto:info@egenix.com
https://pixabay.com/photos/horse-horse-race-race-animal-3880449/

Terminology: Synchronous / Threaded / Asynchronous

* Asynchronous
— While some parts of the program wait for e.g. /O,
other parts can continue to run
— Execution is controlled by the application, not the OS
— This is not the same as “running in parallel” (threading)

— Problem: Sequence of execution is not necessarily deterministic
— Problem: Unexpected delays can happen

— Problem: Scope limited to a single core

— Problem: All parts of the code have to collaborate

— Advantage: Efficient use of resources

mailto:info@egenix.com

Python: Global Interpreter Lock (GIL)

* The GIL makes sure that only one thread runs Python byte code at any

point in time
— Only released for 1/O or other
long running tasks...

— ... and then only if no Python
code can be run

* Threads can only share
the Python Interpreter,
not use it simultaneously

/* Take the GIL.

The function saves errno at entry and restores its value at exit.

tstate must be non-NULL. */
static woid
take_gil(PyThreadState *tstate)
{

int err = errno;

https://github.com/python/cpython/blob/master/Python/ceval_gil.h

— Result: Even if you have multiple cores in the CPUs,
only one thread can run Python byte code

— All other threads which want to run Python code have to wait

mailto:info@egenix.com

Python: Threaded code on multiple cores/threads

Thread 1 Thread 2 Thread 3

* Threaded + multiple cores/threads: .
A lot of waiting

Waiting

— Threads need to wait for the GIL Wa:rl;
Delays due to I/O ono
— Not much parallel work
(mostly only while doing 1/O)

Task 1 Task2 Task3

mailto:info@egenix.com

Python: Threaded code - a closer look

Thread 1 Thread 2 Thread 3

Task 1 Task 2 Task 3

Thread 1 Thread 2 Thread 3

e
!

Task 1 Task 2 Task 3

Thread 1 Thread 2 Thread 3

I mEb
m

E B EEE = m)
O

Task 2 Task 3

Thread 1 Thread 2 Thread 3

& & S

Thread 1, 2,3

Running
Python

Waiting
on GIL

Waiting
on /O

mailto:info@egenix.com

Python: Asynchronous to saturate a single core/thread

* Asynchronous with one thread/process:
Less waiting

All application parts have to participate
Active passing of control (cooperative)
Less overhead compared to threads
No parallel work, only simulated

More efficient use of a single core

Process / Thread / Core
e -.-,..,.1;‘4_;:':&

Running
Python

D execution

Mo
"

Waiting
on /0

mailto:info@egenix.com

Asynchronous programming in Python

* (Coroutines

— Like “subroutines”, but routine can internally give up
control to the calling function where needed

— Created by calling an async function in Python
* New keywords in Python 3.5+

— Make working with coroutines a lot easier
— async def task() - defines a coroutine
— await an_io_call() - gives up control, until an_io_call() responds

* Package asyncio

— Provides the event loop to run coroutines
— Many other helpers to run coroutines

mailto:info@egenix.com

async + await: Example

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task sync: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

=
[ax]

task _sync('Example 1))
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

il
Fad =

mailto:info@egenix.com

async + await: Blocking calls / Giving up control

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task c: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

task _sync('Example 1))
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

i e =
Fad = 32

mailto:info@egenix.com

async + await: Running sync / async functions

Synchronous Asynchronous

import asyncio # Asynchron
import time async def task _async(x):
print (f'Task async: {x} working')}
Synchron awalt asyncio.sleep(2)
def task_sync(x): print {f'Task async: {x} done")
print {f'Task sync: {x} working')
time.sleep(2) # Call task
print (f'Task sync: {x} done') tasks = (task _async('Example 2"},
task_async{ ' Example 3"},

[T s I I ¥y R S W I S I Y

task _sync('Example 1))
async def main():

print ("-'%72) await asyncio.gather(*tasks)
asyncio.run{main(})

i e =
Fad = 32

mailto:info@egenix.com

The asyncio module: a closer look

* Management functions for coroutines

asyncio.run() — runs a coroutine immediately (in a new event loop)

asyncio.gather() — runs multiple coroutines (as tasks) in parallel and
waits for completion of all of them

asyncio.sleep() — sleep for coroutines (let’s other coroutines run)

* Waiting on coroutines

— asyncio.wait_for() — wait for a coroutine (with timeout)
— asyncio.wait() — wait for a set of tasks/coroutines (with timeout)

mailto:info@egenix.com

The asyncio module: a closer look

* Task objects e . \

A\ e Recs

— Represents a scheduled coroutine call YWEEKY BEE-- (
T]
L L/ \‘ 1

T

_ EEK%— \
Run b}/ the event Ioop. | thb (@w /
— asyncio.Task — task object type (don’t create directly) U] Lp o M \j‘L
— Task.cancel() — cancels a Task object v JEEK
— Task.done() — returns True, iff the coroutine has been called

— etc.

* Scheduling tasks / coroutines

— asyncio.create_task() — create and schedule a Task object

— asyncio.current_task() — returns the currently running task object
— asyncio.all_task() — returns all task objects

mailto:info@egenix.com
https://www.pexels.com/photo/schedule-planning-startup-launching-7376/

Running async: the Event Loop

* Task objects are run by an event loop
— Tasks run until the next await is hit
Processing then goes back to the event loop
— There can only be one event loop per thread
— asyncio.get running_loop() returns the loop object

* Blocking code

— Examples: loading data with non-async code, long running calculation

— It is possible to run blocking code in a separate thread
to not have it block the event loop:

loop.run_in_executor()
asyncio.to_thread() (Python 3.9+)

mailto:info@egenix.com
https://pixabay.com/photos/fairground-lights-amusement-park-1149626/

And so much more ...

There are lots of other features and tools
available in the asyncio world:

Subprocesses

Exceptions

Servers

Timers

Signal handlers

Sockets with async support

File descriptors with async support
Different event loop types

etc.

asyncio — Asynchronous I/O

Hello World!

import asyncio

async def main():
print(‘Hello ...")
await asyncio.sleep(1)

print(’... World!")

asyncio.run(main())

asyncio is a library to write concurrent code using the async/await syntax.

asyncio is used as a foundation for multiple Python asynchronous frameworks that provide high-performance
network and web-servers, database connection libraries, distributed task queues, etc.

asyncio is often a perfect fit for IO-bound and high-level structured network code.

mailto:info@egenix.com

Async eco system: Lowest level

* Python Standard Lib A pl;r[hOﬂ':

— asyncio

* Event Loops

— Event loop implementations often come with integrations for
sockets, streams, files, pipes, DNS, network connections, etc.

— asyncio.loop — Standard event loop
— uvloop - Faster loop variant for asyncio using libuv

* Alternative stacks
— Trio — Alternative async library, making things a bit easier / more concise

— AnylO - Abstraction for asyncio and trio

mailto:info@egenix.com
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://github.com/MagicStack/uvloop
https://libuv.org/
https://trio.readthedocs.io/
https://anyio.readthedocs.io/

Async eco system: Low level

* AIO Libs

— Collection of many async packages for Python’s asyncio

— https://github.com/aio-libs

* Examples

— aiohttp — HTTP client / server
— aiopg — PostgreSQL interface
aiomysgl — MySQL interface
aioredis — Redis interface
aiodns — DNS client
(lots more)

Warning;:
The database packages often don’t
support transactions !

mailto:info@egenix.com
https://github.com/aio-libs

Async eco system: High level

Web

ASGI - Async variant of WSGI

Tornado — Web framework

Starlette — New ASGI web framework

Quart — Async web framework similar to Flask

Django 3.0 — Django is starting to support ASGI as well
— Uvicorn — ASCGlI server (similar to gunicorn for WSGlI)

* APIs

— FastAPI — REST API server
— Tartiflette — GraphQL server
— Strawberry — GraphQL server

</ Tornado

Stavleft‘e*

Quart

O FastAPI

mailto:info@egenix.com
https://asgi.readthedocs.io/en/latest/
https://www.tornadoweb.org/en/stable/
https://www.starlette.io/
https://pypi.org/project/Quart/
https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/uvicorn/
http://www.uvicorn.org/
https://fastapi.tiangolo.com/
https://tartiflette.io/
https://strawberry.rocks/

Let’s apply this new knowledge...

... in the Telegram Antispam Bot:

https://github.com/egenix/egenix-telegram-antispam-bot

or search for “egenix telegram”

mailto:info@egenix.com
https://github.com/egenix/egenix-telegram-antispam-bot

Implementation of the Bot

Subclassing of pyrogram’s Client i o class

class AntispamBot(Client):

Dictionary of new members signing up to the group.

Configuration via a Python ¢

The dict maps member IDs to the initial new member message.

Config.py new_members = None

Flag to keep the .idle_loop() alive
keep_running = False

— Use os.environ for overrides

Bot user 1d. Set in .start()
bot_id = 0

Delivered as a Python paCkage # Set of Challenge class names to use

challenges = CHALLENGES

— Easy to install
— Provide _main__.py, to make python -m package work

Observability
— Use logging for simple debugging

— Send admin messages to an admin Telegram group for easy monitoring

mailto:info@egenix.com

Don’t use Bot commands - process all messages

Handlers

USE the CatCh a” handler async def all_messages(self, client, message):

""" Handler which receives all messages sent to the chat.

Delegate tasks to other
methods

This delegates the handling to other methods.

if _debug:
self.log('New message: ', message)
if not self.check_access{message):

Where I/O happens, return

use async # Ignore messages without a .from_user attribute
if not message.from_user:
return
member_id = message.from_user.id

Ignore messages sent by the bot itself
1f member_id == self.bot_id:
return

Delegate some messages to other handlers:
1f message.new_chat_members:
Process new chat members message
return await self.new_chat_members{client, message)

mailto:info@egenix.com

Async works almost like sync code ...

async def welcome_new_member(self, message):

... with just a few await

El(j(jf}cj’ r11(321r]lr]£;: This concludes the conversation and removes the member from
"wait for an answer” the .new_members dict.

message needs to polnt to the user's signup message.

""" Accept and welcome the user as a new member to the group.

chat_id = message.chat.id
new_member = message.new_member
awalt self.remove_conversation(message)
awalt self.send_message(
chat_id,
f'Thank you for answering the welcome question,
' {new_member . first_name}. '
f'%ou are now a member of the chat. '
f'Please introduce yourself to the group in a line or two.')
self.new_members.pop(new_member.id)
awalt self.log_admin(
f'Accepted application by
' ["{new_member.first_name}
' ({username={new_member .username}, id={new_member.id})]"
f'(tg:/fuser?id={new_member.id}}’

)

mailto:info@egenix.com

Antispam Bot: Results

* Since end of April 2022, the bot banned 780+ spam signups
until today

— Saved more than around 26 hours of admin work
— Break even reached

* Saved us from an unknown
number of spam messages

* Mission accomplished

mailto:info@egenix.com

Main takeaway: Async is great — give it a try !

These

o

excitimg:

mailto:info@egenix.com

Thank you for your attention !

mailto:info@egenix.com

Contact

eGenix.com Software, Skills and Services GmbH
Marc-André Lemburg
Pastor-Loh-Str. 48
D-40764 Langenfeld
Germany
LinkedIn:
eMail: mal@egenix.com
Phone: +49 211 9304112
Fax: +49 211 3005250

Web: https://www.egenix.com/

mailto:info@egenix.com
mailto:mal@egenix.com
https://www.egenix.com/

References

Several photos taken from Pixabay

Some screenshots taken from the mentioned websites

All other graphics and photos are (c) eGenix.com or used with
permission

Details are available on request

Logos are trademarks of their resp. trademark holders

mailto:info@egenix.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

