
DuckDB: 
Bringing analytical SQL  

directly to your Python shell

Pedro Holanda 
pedro@duckdblabs.com
pedroholanda.com

FOSDEM 2023 - Python Dev Room

mailto:pedro@duckdblabs.com

• What is DuckDB?
• Motivation
• Main Characteristics 

• DuckDB in the Python-Land 

• Demo 7~10 minutes.
• Estimating NYC taxi fare costs with DuckDB,Pandas and PySpark. 

• Summary

Outline

What is DuckDB

Motivation

▸Combining Database Management Systems with Data
Science

▸ DB Connection

▸Embedded

Main Characteristics

▸DuckDB: The SQLite for Analytics

▸Simple installation

▸Embedded: no server management

▸Fast analytical processing

▸Fast transfer between R/Python and RDBMS

▸DuckDB is currently in pre-release (V0.6)

▸ Check duckdb.org for more details.

$ pip install duckdb

http://duckdb.org

Main Characteristics

▸Columnar Data Storage

▸Vectorized Execution Engine

▸End-to-end Query Optimization

▸Automatic Parallelism

▸Data Compression

▸Beyond Memory Execution

Columnar Data Storage
▸Row-Storage:

▸ Individual rows can be fetched cheaply

▸ However, all columns must always be fetched!

▸What if we only use a few columns?

▸e.g.: What if we are only interested in the price of a product, not the
stores in which it is sold?

Columnar Data Storage
▸Column-Storage:

▸ We can fetch individual columns

▸ Immense savings on disk IO/memory bandwidth when only using few
columns

Compression
▸ Individual columns often have similar values, e.g. dates are
usually increasing

▸Save ~3-5X on storage
(depending on compression algorithms used and data)

DuckDB
Version Taxi Ratio Lineitem Ratio Compression Date

0.2.8 15.3 GB 1 0.85 GB 1 None 07/21

0.2.9 11.2 GB 1.36x 0.79 GB 1.07x RLE + Constant 09/21

0.3.2 10.8 GB 1.41x 0.56 GB 1.51x Bitpacking 02/22
0.3.3 6.9 GB 2.21x 0.32 GB 2.64x Dictionary
 24/22
0.5.0 6.6 GB 2.31x 0.29 GB 2.93x For 09/22
0.6 4.8GB 3.18x 0.17 GB 5x FSST + CHIMP 11/22

Compression

▸Example:
We have a query that requires 5 columns of the table.

▸No compression:
Read 5 columns (50GB) from disk ≅ 8 minutes

▸Compression:
Read 5 compressed columns (5x = 10GB) from disk ≅ 1:40
minutes

Execution

▸SQLite use tuple-at-a-time processing

▸Process one row at a time

▸Pandas use column-at-a-time processing

▸Process entire columns at once

▸DuckDB uses vectorized processing

▸Process batches of columns at a time

Tuple-at-a-Time
ResultTable

Vectorized Processing
Table Result

Column-at-a-Time
Table Result

Execution

▸Tuple-at-a-Time (SQLite)

▸Optimize for low memory footprint

▸Only need to keep single row in memory

▸Comes from a time when memory was expensive

▸High CPU overhead per tuple!

Tuple-at-a-Time
ResultTable

Execution

▸Column-at-a-Time (Pandas)

▸Better CPU utilization, allows for SIMD

▸Materialize large intermediates in memory!

▸ Intermediates can be gigabytes each…

▸Problematic when data sizes are large

Column-at-a-Time
Table Result

Execution

▸Vectorized Processing (DuckDB)

▸Optimized for CPU Cache locality

▸SIMD instructions, Pipelining

▸Small intermediates (ideally fit in L1 cache)

Vectorized Processing
Table Result

CPU CORE

MAIN MEMORY (16GB-2TB)
LATENCY: 100NS

L3 CACHE (20MB)
LATENCY: 20NS

L2 CACHE (256KB)
LATENCY: 5NS

L1 CACHE (32KB)
LATENCY: 1NS

End-To-End Query Optimization

▸Expression rewriting

▸Join Ordering

▸Subquery Flattening

▸Filter/Projection Pushdown

a b c d e

T

Automatic Parallelism & Beyond Memory Execution

▸DuckDB has parallel versions of most operators

▸Scanners (Insertion Order Preservation)

▸Aggregations

▸Joins

▸Pandas only support single-threaded execution.

▸DuckDB supports execution of data that does not fit in memory

▸Graceful Degradation

▸Never Crash always executes query

DuckDB In the Python
Land

APIs

▸Python DB API 2.0 Compliant

▸Relational API

Integrations

▸Tight Integration - Zero Copy (Input + Output)

▸Pandas

▸PyArrow

▸NumPy

▸SQL Alchemy

▸IBIS (Default Backend)

Usage

Demo

Summary

Summary

▸DuckDB is an embedded database system.

▸Designed for Analytical Queries (i.e., Data Analysis/Science).

▸Open-Source (Under MIT license) and free to use!

▸Has binding for many languages (e.g., Python, R, Java…)

▸Tightly integrated with the Python Ecosystem.

▸Zero-Copy access to Python/NumPy and PyArrow datasets.

▸ Implements the DB and Relational APIs.

▸Full SQL Support!

Pedro Holanda 
pedro@duckdblabs.com
pedroholanda.com

mailto:pedro@duckdblabs.com

