FOSDEM 2023 - Python Dev Room

DuckDB:
Bringing analytical SQL
directly to your Python shell

Pedro Holanda
pedro@duckdblabs.com ‘
pedroholanda.com DUGKDB L abs

mailto:pedro@duckdblabs.com

Outline

« What is DuckDB?
« Motivation
- Main Characteristics

* DuckDB in the Python-Land

 Demo 7~10 minutes.
» Estimating NYC taxi fare costs with DuckDB,Pandas and PySpark.

« Summary

What is DuckDB

Motivation

» Combining Database Management Systems with Data

Science
@

» DB Connection

RDBMS

MSQLite

ANALYTICS

» Embedded

Main Characteristics

Simple installation
$ pip install duckdb

Embedded: no server management
Fast analytical processing
Fast transfer between R/Python and RDBMS

DuckDB is currently in pre-release (V0.6)

Check duckdb.org for more details.

http://duckdb.org

Main Characteristics

Columnar Data Storage

Vectorized Execution Engine

End-to-end Query Optimization

Automatic Parallelism

Data Compression

Beyond Memory Execution

Columnar Data Storage

» Row-Storage:

» Individual rows can be fetched cheaply

» However, all columns must always be fetched!
» What if we only use a few columns?

»e.g.: What if we are only interested in the price of a product, not the
stores in which it is sold?

W/,1... row-store column-store |[:lpendcs @

Date i storell product l customer § price

cREER

Date |Store |Product |Customer| Price

|_||—_—_—_—_—_

Columnar Data Storage ’

» Column-Storage:
» We can fetch individual columns

» Immense savings on disk IO/memory bandwidth when only using few

columns
W/,1... row-store column-store [ilpondes @w
Date |Store |Product |Customer| Price Date m m m

=

Compression

Individual columns often have similar values, e.g. dates are

usually increasing

Save ~3-5X on storage
(depending on compression algorithms used and data)

3::;5: Taxi Ratio | Lineitem | Ratio Compression Date
0.2.8 15.3 GB 1 0.85 GB 1 None 07/21
0.2.9 11.2 GB 1.36X% 0.79 GB 1.07x RLE + Constant 09/21
0.3.2 10.8 GB 1.41x 0.56 GB 1.51x Bitpacking 02/22
0.3.3 6.9 GB 2.21X 0.32 GB 2.64X Dictionary 24/22
0.5.0 6.6 GB 2.31x 0.29 GB 2.93x For 09/22

0.6 4.8GB 3.18x 0.17 GB 5X FSST + CHIMP 11/22

Compression

Example:
We have a query that requires 5 columns of the table.

No compression:
Read 5 columns (50GB) from disk = 8 minutes

Compression:
Read 5 compressed columns (5x = 10GB) from disk = 1:40

minutes

Execution

» SQLIte use tuple-at-a-time processing
» Process one row at a time

» Pandas use column-at-a-time processing
» Process entire columns at once

» DuckDB uses vectorized processing

» Process batches of columns at a time

Tuple-at-a-Time Column-at-a-Time Vectorized Processing
Table Result

=

Table Result Table Result

KRR

Execution

Tuple-at-a-Time (SQLite) %the
Optimize for low memory footprint
Only need to keep single row in memory

Comes from a time when memory was expensive

High CPU overhead per tuple!

Tuple-at-a-Time
Table Result

(e

Execution

» Column-at-a-Time (Pandas) |il pandas

» Better CPU utilization, allows for SIMD

» Materialize large intermediates in memory!
» Intermediates can be gigabytes each...

» Problematic when data sizes are large

Column-at-a-Time

Table Result

Y%

Execution

» Vectorized Processing (DuckDB) ®-
» Optimized for CPU Cache locality
» SIMD instructions, Pipelining

» Small intermediates (ideally fit in L1 cache)

L1 CACHE (32KB)

LATENCY: INS

Vectorized Processing
Table Result L2 CACHE (256KB)

|T. T T LATENCY: 5NS
i ' L3 CACHE (20MB)

LATENCY: 20NS

MAIN MEMORY (16GB-2TB)

LATENCY: 100NS

End-To-End Query Optimization

» Expression rewriting

»Join Ordering

» Subquery Flattening

» Filter/Projection Pushdown

.
a b C d =

1!l pandas

filter out the rows
filtered _df = t[t['a'] > 0]
perform the aggregate

result = filtered df.groupby(['b']).a0o(
Min=('a', 'min')

)

Automatic Parallelism & Beyond Memory Execution

» DuckDB has parallel versions of most operators
» Scanners (Insertion Order Preservation)
» Aggregations
»Joins

» Pandas only support single-threaded execution.

» DuckDB supports execution of data that does not fit in memory
nevergive up

» Graceful Degradation

» Never Crash always executes query

O

never surrender

DuckDB In the Python
Land

APls

» Python DB API 2.0 Compliant

import duckdb
con = duckdb. ("duck.db")

con. ("SELECT j+1 FROM integers WHERE i=2")

» Relational API

import duckdb

con = duckdb. ("duck.db")

Table operator returns a table scan
rel = con. ("integers")

We can 1inspect intermediates
rel. ()
We can chain multiple operators

rel. ("i=2"). ("+1"). ()

Integrations

» Tight Integration - Zero Copy (Input + Output)

» Pandas
import pandas as pd
import duckdb

d={col1': [1, 2], 'col2': [3, 41}
df - pd.DataFrame(data=d)

con = duckdb.connect()

Consumes Pandas Dataframe
res = con. cute("select * from df'")

Produces Pandas Dataframe
result_dataframe = res.df()

» PyYArrow
import pyarrow as pa
import duckdb

d ={'coll': [1, 2], 'col2':
arrow = pa.Table.

con = duckdb. . ()

Consumes Arrow Object
res = con. cute{"select x from arrow')

Produces Arraow Table
result_arrow = res.arrow()

» NumPy
»SQL Alchemy
» IBIS (Default Backend)

Usage

Downloads last day: 33,594
Downloads last week: 251,770
Downloads last month: 898,816

Daily Download Quantity of duckdb package - Overall

30d 60d 90d 120d all

60,000
50,000 ' N
/ ’J\
Y 40,000 .
g Lo (T)T
[= —o&— With_Mirrors ‘ \
S 30,000| —e— Without_Mirrors \
Q
(a

10,000

Summary

DuckDB is an embedded database system.
Designed for Analytical Queries (i.e., Data Analysis/Science).
Open-Source (Under MIT license) and free to use!
Has binding for many languages (e.qg., Python, R, Java...)
Tightly integrated with the Python Ecosystem.

Zero-Copy access to Python/NumPy and PyArrow datasets.
Implements the DB and Relational APIs.

Full SQL Support!

Pedro Holanda
pedro@duckdblabs.com
pedroholanda.com

mailto:pedro@duckdblabs.com

