
PULSE-WIDTH-MODULATION
(PWM) IS EASY, ISN'T IT?

(TURNING IT OFF AND ON AGAIN)

ABOUT ME & PENGUTRONIX
Uwe:

kernel engineer @ Pengutronix since 2008
PWM reviewer
contributor to various kernel subsystems
ukleinek on libera and OFTC
PGP: E2DCDD9132669BD6

Pengutronix:

Embedded Linux consulting & support since 2001

linux$ grep -c @pengutronix.de MAINTAINERS
40

linux$ git lg --author=@pengutronix.de v6.2-rc5 | wc -l
7078

WHAT IS A PWM?
periodic square wave signal
used to

blink or dim LEDs
drive display backlights
motor control (e.g. fan)
remote controls

ABSTRACTION OF A PWM
period + duty cycle [ns]
polarity (normal or inverted)
enable & disable

 ____________ ____________ ____________
 ____/ ____/ ____/ __...
 |<--------------->| period
 |<---------->| duty cycle

ABSTRACTION OF A PWM (CONT)

Goal "Idempotency":

doesn't modify hw state.

struct pwm_state {
 u64 period; // [ns]
 u64 duty_cycle; // [ns]
 enum pwm_polarity polarity;
 bool enabled;
 ...
};

struct pwm_ops {
 ...
 int (*apply)(struct pwm_device *pwm, const struct pwm_state *state);
 int (*get_state)(struct pwm_device *pwm, struct pwm_state *state);
 ...
};

ops->get_state(mypwm, &state);
ops->apply(mypwm, &state);

SIMPLE ABSTRACT PWM
Input clk: 13333 kHz
quantum ≃ 75.001875... ns
duty_cycle and period ∈ { 0 q, 1 q, ... 1023 q }

 ____________ ____________ ____________
 ____/ ____/ ____/ __...
 |<--------------->| period (18q)
 |<---------->| duty cycle (13q)

ISSUE: API HAS DIFFERENT ACCURACY THAN
HARDWARE

Input clk: 13333 kHz
quantum ≃ 75.001875... ns
duty_cycle and period ∈ { 0 q, 1 q, ... 1023 q }

Request:

period = 30000 ns
duty_cycle = 16000 ns

Pick period:

399 q ≃ 29925.748 ns (Δ ≃ -74.252 ns)
400 q ≃ 30000.750 ns (Δ ≃ 0.750 ns)

ISSUE: PRECISION OF INTEGER MATH
(DIVISION)

Request: period = 30000 ns

period_steps = clkrate / NSEC_PER_SEC * period

Always divide in the last step and only once.

ISSUE: TIME VS. FREQUENCY
Input clk: 13333 kHz
quantum ≃ 75.001875... ns
duty_cycle and period ∈ { 0 q, 1 q, ... 1023 q }

Request: frequency = 1161587 Hz (period = 860.891 ns)

pick period:

11 q ≃ 825.021 ns (Δ ≃ -35.871 ns) 🠀 better
12 q ≃ 900.023 ns (Δ ≃ +39.131 ns)

consider frequencies:

1 / 11 q ≃ 1212090.909 Hz (Δ ≃ +50503.909 Hz)
1 / 12 q ≃ 1111083.333 Hz (Δ ≃ -50503.667 Hz) 🠀 better

ISSUE: PRECISION OF CLK_GET_RATE()
Input clk: 32768 Hz
quantum ≃ 30517.578125 ns

Really: clk ∈ (32767, 32769) Hz

=> quantum ∈ (30516.646830846228, 30518.50947599719)

ISSUE: TRANSITIONS

Reconfiguration request @14q to period = 12q + duty_cycle = 5q
might result in:

Completes old period

 ____________ ____________ ____________
 ____/ ____/ ____/ __...
 |<--------------->| period = 18q
 |<---------->| duty cycle = 13q

 ____________ * ____ ____ ____
 ____/ ____/ ______/ ______/ ___...

 |<--------------->| old period (18q)
 |<---------->| old duty cycle (13q)
 |<--------->| new period (12q)
 |<-->| new duty cycle (5q)

ISSUE: TRANSITIONS (CONT)

Reconfiguration request @14q to period = 12q + duty_cycle = 5q
might result in:

Immediate start of a new period:

 ____________ ____________ ____________
 ____/ ____/ ____/ __...
 |<--------------->| period = 18q
 |<---------->| duty cycle = 13q

 ____________ *____ ____ ____ ...
 ____/ \/ ______/ ______/ ______/

 |<--------------->| old period (18q)
 |<---------->| old duty cycle (13q)
 |<--------->| new period (12q)
 |<-->| new duty cycle (5q)

ISSUE: TRANSITIONS (CONT)
Several more possible issues:

mixed settings (e.g. a cycle with new period but the old duty cycle)
hardware must be disabled for reconfiguration

Depending on hardware glitches cannot be prevented reliably.

ISSUE: BEHAVIOUR ON DISABLE
Typical (wrong) expectation:

Usual behaviours:

inactive level
freeze
high-Z

If you want constant inactive output, use

pwm_get_state(mypwm, &state);
state.enabled = false; // <--- Wrong!
state.duty_cycle = 0;
pwm_apply_state(mypwm, &state);

state.enabled = true;
state.duty_cycle = 0;

FURTHER COMMON HARDWARE LIMITATIONS
duty_cycle != 0
duty_cycle != period
shared or fixed period
no .get_state() possible

sed -rn '/Limitations:/,/*\/?$/p' drivers/pwm/*.c

ROUNDING STRATEGY (CONSUMER SIDE)
There is no "best" rounding strategy.

So pick an easy one: Always round down.

Consumers should know the result beforehand to determine "best" request.

Idea: new callback .round_state() that determines the state actually
implemented for a given request (always rounding down).

API POLICY: ROUND DOWN PERIOD AND
DUTY_CYCLE

consistent .apply() <-> .get_state()
time vs frequency
simple to implement
simple to work with (.round_state())

Status quo: 🫤

ADVICE TO DRIVER AUTHORS
Enabling PWM_DEBUG during tests

Compares HW state before and a�er a call to .apply(). Wails if the old state is
a better match for the request than the new state or the new state is

determined using unexpected rounding.

Tests idempotency.

ADVICE TO DRIVER AUTHORS (CONT)
document hardware properties
link to manual

