
Adopting continuous-profiling:

Understand how your code
utilizes cpu/memory

Introduction into continuous-profiling and how it can
help you writing more efficient code

2023-02-05

FOSDEM 2023 - Monitoring and Observability devroom

Christian Simon
Software Engineer at Grafana Labs

Working on observability databases (Loki, Mimir, Phlare)

● Introspect your applications/infrastructure running in production

● Objective way of looking at state between teams

● Goals
○ Avoid negative user experience and ideally catch problems before they become user facing

○ Reduce the mean time to repair

○ Aid in root cause analysis

Observability

● No specific instrumentation or application

changes need, as most applications

already support logging in some form

● Challenges
○ Aggregations across many log lines can become quite

expensive

○ Different log formats and sometimes it might be hard

to correlate information

○ Signal to noise ratio can hide important information

Observability using Logs

● Numerical data measured over a time

● Typical metrics measured for web services:
○ RED method (Rate, Error rate and Duration of requests)

● A lot of values can be stored and aggregated

efficiently

● Challenges
○ Applications require instrumentation, so it is important to

know beforehand what to measure

Observability using Metrics

● Introspect how requests, which are dependent

on each other are flowing through a distributed

system.

● Go from metrics to traces using exemplars

● Challenges
○ Not all requests might be sampled

Observability using Traces

Let’s go through an example

● User raises a ticket because during check out they saw a timeout

● Looking up the trace ID in the logs reveals that tracing show the location service has

been timing out

● Looking at the metrics for all location service replicas, we can see 5% of the

requests time out

● Next steps
○ Scale up replicas for location service 💸💸💸💸
○ Optimise location service

Profiling shows the resource usage of an application

● Profiling information serves to aid program optimization, and more specifically, performance
engineering. ⚡

● Profiling can help reduce and understand workload cost 💰(TCO), improve service latency and fixes
applications problems (OOM)🔥

● Multiple types of profiling data
○ Space (memory): How much memory my application uses or allocates ? And where ?
○ Time (complexity): The frequency and duration of function calls. Where is my application spending

most of CPU time ?
○ And more…. threads, synchronization….

Observability using Profiles

What is measured in a Profile?

package main

func main() {
 // work
 doALot()
 doLittle()
}

func prepare() {
 // work
}

func doALot() {
 prepare()
 // work
}

func doLittle() {
 prepare()
 // work
}

What is measured in a profile? Time on CPU

Each measurement gets recorded on a stack-trace level
package main

func main() {
 // spend 3 cpu cycles
 doALot()
 doLittle()
}

func prepare() {
 // spend 5 cpu cycles
}

func doALot() {
 prepare()
 // spend 20 cpu cycles
}

func doLittle() {
 prepare()
 // spend 5 cpu cycles
}

main() 3

main() > doALot() > prepare() 5

main() > doALot() 20

main() > doLittle() > prepare() 5

main() > doLittle() 5

Visualization of Profiles (try it yourself: https://pprof.me/b9d077f)

TOP table

● Flat: Consumption by the function only
● Cumulative: Consumption by the function and its

descendants
● Sum%: Based on the order of the table how much of the

total measured consumption is covered by the row

package main

func main() {
 // spend 3 cpu cycles
 doALot()
 doLittle()
}

func prepare() {
 // spend 5 cpu cycles
}

func doALot() {
 prepare()
 // spend 20 cpu cycles
}

func doLittle() {
 prepare()
 // spend 5 cpu cycles
}

https://pprof.me/b9d077f

Visualization of Profiles (try it yourself: https://pprof.me/b9d077f)

Flamegraph

● Whole width represent the total resources used (over

the whole measurement duration)

● Ability to spot higher usage nodes

● Colours are random

package main

func main() {
 // spend 3 cpu cycles
 doALot()
 doLittle()
}

func prepare() {
 // spend 5 cpu cycles
}

func doALot() {
 prepare()
 // spend 20 cpu cycles
}

func doLittle() {
 prepare()
 // spend 5 cpu cycles
}

https://pprof.me/b9d077f

How to gather a profile? (further read: eBPF pros/cons)

● Instrumenting the code base
○ Tooling and formats depending on each language ecosystem
○ Access to more detailed runtime information

● eBPF based collection
○ No insights into runtime information

(so better suited for compiled languages)
○ Doesn’t require instrumentation of application

https://pyroscope.io/blog/ebpf-profiling-pros-cons/

How to gather a profile? Let’s take a look at Go

● Standard library includes CPU, Memory, Goroutine, Mutex and Block resources
● Provides profiles using a HTTP interface

○ Profiling data is returned using protobuf definition

● Data meant to be consumed by the pprof CLI
○ # Get a CPU profile over the last 2 seconds

$ pprof "http://localhost:6060/debug/pprof/profile?seconds=2"
Get the heap memory allocations
$ pprof "http://localhost:6060/debug/pprof/allocs"

○ Common to use the -http parameter to view profiles using the web interface

● Find more on Profiling in Go on https://pkg.go.dev/runtime/pprof#Profile

http://localhost:6060/debug/pprof/profile?seconds=2
http://localhost:6060/debug/pprof/allocs
https://pkg.go.dev/runtime/pprof#Profile

Instrumentation of Go code

package main

import (

 "log"

 "net/http"

 _ "net/http/pprof"

 "time"

)

func main() {

 go func() {

 log.Println(http.ListenAndServe("localhost:6060", nil))

 }()

 // spend 3 cpu cycles

 doALot()

 doLittle()

}

[...]

The challenges with deterministic profiling

● Significant runtime overhead
● Hard to recreate problematic scenarios
● Even harder in distributed systems / microservices
● Large volume of profiling data

Continuous profiling

● Championed by Google in production

● Sampling the call stack

● Sampling ⇒ very low overhead

● “Always on” in production

A typical continuous profiling workflow

Store / Query / Visualize

Store / Query / Visualize

● pprof CLI and profile collection at scale can become tedious
● Multiple solutions exist
● Profiling databases can simplify the workflow

○ CNCF Pixie
○ Pyroscope
○ Polarsignal Parca
○ Grafana Phlare

Demo time

Profile guided optimizations

● “Optimize” step of the workflow typically is involves a human reasoning about

profiling data and the code

● Compilers can also do Profile guided optimization (PGO)

● Having production/real world profiling information allows to improve decision making

at compile time

● Go 1.20 includes PGO in public review, which improves the inlining decision making

https://github.com/simonswine/demo-pprof

#phlare on https://grafana.slack.com/

📖https://grafana.com/docs/phlare/latest/

https://play-phlare.grafana.org/

https://github.com/simonswine/demo-pprof
https://grafana.slack.com/
https://grafana.com/docs/phlare/latest/
https://play-phlare.grafana.org/

